Liuchilders8015
Osteochondral defects in middle-aged patients might be treated with focal metallic implants. First developed for defects in the knee joint, implants are now available for the shoulder, hip, ankle and the first metatarsalphalangeal joint. While providing pain reduction and clinical improvement, progressive degenerative changes of the opposing cartilage are observed in many patients. The mechanisms leading to this damage are not fully understood. This protocol describes a tribological experiment to simulate a metal-on-cartilage pairing and comprehensive analysis of the articular cartilage. Metal implant material is tested against bovine osteochondral cylinders as a model for human articular cartilage. By applying different loads and sliding speeds, physiological loading conditions can be imitated. To provide a comprehensive analysis of the effects on the articular cartilage, histology, metabolic activity and gene expression analysis are described in this protocol. The main advantage of tribological testing is that loading parameters can be adjusted freely to simulate in vivo conditions. Furthermore, different testing solutions might be used to investigate the influence of lubrication or pro-inflammatory agents. By using gene expression analysis for cartilage-specific genes and catabolic genes, early changes in the metabolism of articular chondrocytes in response to mechanical loading might be detected.The purpose of this tutorial is to describe the preparation of the rat vocal fold for histochemical neuromuscular study. This protocol outlines procedures for rat laryngeal dissection, flash-freezing, and cryosectioning of the vocal folds. This study describes how to cryosection vocal folds in both longitudinal and cross-sectional planes. A novelty of this protocol is the laryngeal tracking during cryosectioning that ensures accurate identification of the intrinsic laryngeal muscles and reduces the chance of tissue loss. Figures demonstrate the progressive cryosectioning in both planes. Twenty-nine rat hemi-larynges were cryosectioned and tracked from the emergence of the thyroid cartilage to the appearance of the first section that included the full vocal fold. The full vocal fold was visualized for all animals in both planes. There was high variability in the distance from the appearance of the thyroid cartilage to the appearance of the full vocal fold in both planes. Weight was not correlated to depth of laryngeal landmarks, suggesting individual variability and other factors related to tissue preparation may be responsible for the high variability in the appearance of landmarks during sectioning. selleckchem This study details a methodology and presents morphological data for preparing the rat vocal fold for histochemical neuromuscular investigation. Due to high individual variability, laryngeal landmarks should be closely tracked during cryosectioning to prevent oversectioning tissue and tissue loss. The use of a consistent methodology, including adequate tissue preparation and awareness of landmarks within the rat larynx, will assist with consistent results across studies and aid new researchers interested in using the rat vocal fold as a model to investigate laryngeal neuromuscular mechanisms.The M42 aminopeptidases form functionally active complexes made of 12 subunits. Their assembly process appears to be regulated by their metal ion cofactors triggering a dimer-dodecamer transition. Upon metal ion binding, several structural modifications occur in the active site and at the interaction interface, shaping dimers to promote the self-assembly. To observe such modifications, stable oligomers must be isolated prior to structural study. Reported here is a method that allows the purification of stable dodecamers and dimers of TmPep1050, an M42 aminopeptidase of T. maritima, and their structure determination by X-ray crystallography. Dimers were prepared from dodecamers by removing metal ions with a chelating agent. Without their cofactor, dodecamers became less stable and were fully dissociated upon heating. The oligomeric structures were solved by the straightforward molecular replacement approach. To illustrate the methodology, the structure of a TmPep1050 variant, totally impaired in metal ion binding, is presented showing no further breakdown of dimers to monomers.Primary clarification is an essential step in a biomanufacturing process for the initial removal of cells from therapeutic products within the harvested cell culture fluid. While traditional methods like centrifugation or filtration are widely implemented for cell removal, the equipment for these processes have large footprints and operation can involve contamination risks and filter fouling. Additionally, traditional methods may not be ideal for continuous bioprocessing schemes for primary clarification. Thus, an alternate application using acoustic (sound) waves was investigated to continuously separate cells from the cell culture fluid. Presented in this study is a detailed protocol for using a bench-scale acoustic wave separator (AWS) for the primary separation of culture fluid containing a monoclonal IgG1 antibody from a CHO cell bioreactor harvest. Representative data are presented from the AWS and demonstrate how to achieve effective cell clarification and product recovery. Finally, potential applications for AWS in continuous bioprocessing are discussed. Overall, this study provides a practical and general protocol for the implementation of AWS in primary clarification for CHO cell cultures and further describes its application potential in continuous bioprocessing.Tilapia lake virus disease (TiLVD), an emerging viral disease in tilapia caused by the tilapia lake virus (TiLV), is a persistent challenge in the aquaculture industry that has resulted in the mass morbidity and mortality of tilapia in many parts of the world. An effective, rapid, and accurate diagnostic assay for TiLV infection is therefore necessary to detect the initial infection and to prevent the spread of the disease in aquaculture farming. In this study, a highly sensitive and practical reverse transcription loop-mediated isothermal amplification (RT-LAMP) method is presented to detect tilapia lake virus in fish tissue. A comparison of the RT-qPCR and RT-LAMP assays of infected samples revealed positive results in 63 (100%) and 51 (80.95%) samples, respectively. Moreover, an analysis of uninfected samples showed that all 63 uninfected tissues yielded negative results for both the RT-qPCR and RT-LAMP assays. The cross-reactivity with five pathogens in tilapia was evaluated using RT-LAMP, and all the tests showed negative results.