Lindsaybarr8397

Z Iurium Wiki

Antibiotic resistance has become a global public health concern, rendering common infections untreatable. Given the widespread occurrence, increasing attention is being turned toward environmental pathways that potentially contribute to antibiotic resistance gene (ARG) dissemination outside the clinical realm. Studies during the past decade have clearly proved the increased ARG pollution trend along with gradient of anthropogenic interference, mainly through marker-ARG detection by PCR-based approaches. However, accurate source-tracking has been always confounded by various factors in previous studies, such as autochthonous ARG level, spatiotemporal variability and environmental resistome complexity, as well as inherent method limitation. The rapidly developed metagenomics profiles ARG occurrence within the sample-wide genomic context, opening a new avenue for source tracking of environmental ARG pollution. Coupling with machine-learning classification, it has been demonstrated the potential of metagenomic ARG profiles in unambiguously assigning source contribution. Through identifying indicator ARG and recovering ARG-host genomes, metagenomics-based analysis will further increase the resolution and accuracy of source tracking. In this review, challenges and progresses in source-tracking studies on environmental ARG pollution will be discussed, with specific focus on recent metagenomics-guide approaches. We propose an integrative metagenomics-based framework, in which coordinated efforts on experimental design and metagenomic analysis will assist in realizing the ultimate goal of robust source-tracking in environmental ARG pollution.The current study reports the community succession of different toxin and non-toxin producing cyanobacteria at different stages of cyanobacterial harmful algal blooms (CyanoHABs) and their connectivity with nitrogen and phosphorus cycles in a freshwater lake using an ecogenomics framework. Comprehensive high throughput DNA sequencing, water quality parameter measurements, and functional gene expressions over temporal and spatial scales were employed. Among the cyanobacterial community, the lake was initially dominated by Cyanobium during the months of May, June, and early July, and later primarily by Aphanizomenon and Dolichospermum depicting functional redundancy. Finally, Planktothrix appeared in late August and then the dominance switched to Planktothrix in September. Microcystis aeruginosa and Microcystis panniformis; two species responsible for cyanotoxin production, were also present in August and September, but in significantly smaller relative abundance. MC-LR (0.06-1.32 µg/L) and MC-RR (0.01-0.26 µg/ the nitrogen-fixing nif gene and (p less then 0.001) and the PPX enzyme for the stored polyphosphate utilization (r = 0.77, p less then 0.001). Interestingly, the lake experienced a longer N-fixing period (2-3 months) before non-fixing cyanobacteria (Planktothrix) dominated the entire lake in late summer. The Provo Bay site, which is known to be nutrient-rich historically, had early episodes of filamentous cyanobacteria blooms compared to the rest of the lake.Wastewater treatment plants are major point sources of (micro)pollutant emissions and advanced wastewater treatment technologies can improve their removal capacity. While abundant data on individual advanced treatment technologies is available, there is limited knowledge regarding the removal performance of ozonation combined with multiple post-treatments and stand-alone membrane bioreactors. This is especially true for the removal of in vitro and in vivo toxicity. Therefore, we investigated the removal of 40 micropollutants and toxicity by a pilot-scale ozonation with four post-treatments non-aerated and aerated granular activated carbon and biological filtration. In addition, two stand-alone membrane bioreactors fed with untreated wastewater and one MBR operating with ozonated partial flow recirculation were analysed. Aqueous and extracted samples were analysed in vitro for (anti)estrogenic, (anti)androgenic and mutagenic effects. To assess in vivo effects, the mudsnail Potamopyrgus antipodarum was exposed tant concentrations. However, the formation of toxicity requires a post-treatment. Here, ozonation coupled to granular activated carbon filtration seemed the most promising treatment process.Historical accumulation of phosphorus (P) in lake sediment often contributes to and sustains eutrophic conditions in lakes, even when external sources of P are reduced. The most cost-effective and commonly used method to restore the balance between P and P-binding metals in the sediment is aluminum (Al) treatment. The binding efficiency of Al, however, has varied greatly among treatments conducted over the past five decades, resulting in substantial differences in the amount of P bound per unit Al. We analyzed sediment from seven previously Al treated Swedish lakes to investigate factors controlling binding efficiency. In contrast to earlier work, lake morphology was negatively correlated to binding efficiency, meaning that binding efficiency was higher in lakes with steeply sloping bathymetry than in lakes with more gradually sloping bottoms. This was likely due to Al generally being added directly into the sediment, and not to the water column. Higher binding efficiencies were detected when Al was applied directly into the sediment, whereas the lowest binding efficiency was detected where Al was instead added to the water column. Al dose, mobile sediment P and lake morphology together explained 87% of the variation in binding efficiency among lakes where Al was added directly into the sediment. This led to the development of a model able to predict the optimal Al dose to maximize binding efficiency based on mobile sediment P mass and lake morphology. The predictive model can be used to evaluate cost-effectiveness and potential outcomes when planning Al-treatment using direct sediment application to restore water quality in eutrophic lakes.Hospital wastewater contains several micro and macro pollutants that cannot be removed efficiently by conventional treatment processes. Thus, generally hybrid and multistage treatment methods are suggested for the treatment of hospital wastewater. Supercritical water oxidation (SCWO) is a promising method for the removal of emerging organic pollutants from hospital wastewater in one step and a very short reaction time. In this study, supercritical water oxidation (SCWO) process was used for the removal of pharmaceuticals in addition to conventional pollutants from real hospital wastewater. As a result of a series of preliminary studies, the optimum conditions were selected as 450 °C, 60 s, and 11 for temperature, reaction time, and oxidant ratio (H2O2/COD), respectively, for the treatment of hospital wastewater at 25 ± 1 MPa. The removal rates were determined above 90% for COD, BOD, TOC, TN, and SS from hospital wastewater. Phosphorus removal was greater than 90%, while the removal rates were around 80% for phenol, AOX, and surfactants in hospital wastewater. A total of 9 pharmaceuticals were observed in the real hospital wastewater samples. The highest removal rate was obtained for Paracetamol as 99.9%, while the lowest removal rate was obtained for Warfarin as 72% after SCWO treatment of hospital wastewater. As a result, it can be concluded that SCWO process is sufficient for the treatment of hospital wastewater without the need of additional treatment steps, with high removal rates in a short reaction time.Sulfamethoxazole (SMX) is a common antibiotic prescribed for treating infections, which is frequently detected in the effluent of conventional wastewater treatment plants (WWTPs). Its degradation and conversion in a laboratory-scale sulfur-based autotrophic denitrification reactor were for the first time investigated through long-term reactor operation and short-term batch experiments. Co-metabolism of SMX and nitrate by autotrophic denitrifiers was observed in this study. The specific SMX removal rate was 3.7 ± 1.4 μg/g SS-d, which was higher than those reported in conventional wastewater treatment processes. The removal of SMX by the enriched denitrifying sludge was mainly attributed to biodegradation. Four transformation products (three known with structures and one with unknown structure) were identified, of which the structures of the two transformation products (TPs) were altered in the isoxazole ring. Additionally, the presence of SMX significantly shaped the microbial community structures, leading to the dominant denitrifier shifting from Sulfuritalea to Sulfurimonas to maintain the stability of system. Collectively, the sulfur-based autotrophic denitrification process could effectively remove SMX in addition to efficient nitrate removal, and further polish the effluent from conventional WWTPs.The Three Gorges Dam (TGD) is the world's largest hydropower construction. It can significantly impact contaminant transport in the Yangtze River-East China Sea Continuum (YR-ECSC). In addition to evaluating the impact of the TGD on the deposition of contaminants in the reservoir, we also address their cycles in the river below the dam and in the coastal East China Sea. A comprehensive study of metal contaminant transport along the YR-ECSC has not been previously attempted. We quantified the fates of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd) and chromium (Cr) within the YR-ECSC, and the impacts of the TGD, by sampling water and suspended particles along the Yangtze River during spring, summer, fall, and winter and by modeling. We found that the Yangtze River transports substantial amounts of heavy metals into the coastal ocean. In 2016, riverine transport amounted to 48, 5900, 11,000, 230, and 15,000 megagrams (Mg) for Hg, As, Pb, Cd, and Cr, respectively, while other terrestrial contributions were negligible. Metal flux into the coastal ocean was primarily derived from the downstream portion of the river (84-97%), while metals transported from upstream were largely trapped in the Three Gorges Reservoir (TGR, 72%-96%). For example, 34 Mg of Hg accumulated in the TGR owing to river damming, large-scale soil erosion, and anthropogenic point source releases, while 21 Mg of Hg was depleted from the riverbed downstream owing to the altered river hydrology caused by the TGD. Overall the construction of TGD resulted in a 6.9% net decrease in the Hg burden of the East China Sea, compared to the pre-TGD period.Land-based micropollutants are the largest pollution source of the marine environment acting as the major large-scale chemical sink. Despite this, there are few comprehensive datasets for estimating micropollutant fluxes released to the sea from river mouths. Hence, their dynamics and drivers remain poorly understood. Here, we address this issue by continuous measurements throughout the Rhône River basin (∼100,000 km2) of 1) particulate micropollutant concentrations (persistant organic micropollutants polychlorobiphenyls [PCBi] and polycyclic aromatic hydrocarbons [PAHs]; emerging compounds glyphosate and aminomethylphosphonic acid [AMPA]; and trace metal elements [TME]), 2) suspended particulate matter [SPM], and 3) water discharge. From these data, we computed daily fluxes for a wide range of micropollutants (n = 29) over a long-term period (2008-2018). We argue that almost two-thirds of annual micropollutant fluxes are released to the Mediterranean Sea during three short-term periods over the year. The watershed hydro-climatic heterogeneity determines this dynamic by triggering seasonal floods.

Autoři článku: Lindsaybarr8397 (Sellers Carstensen)