Lindrush8721
The Van der Waals (vdWs) hetero-structures consist of two-dimensional materials have received extensive attention, which is due to its attractive electrical and optoelectronic properties. In this paper, the high-quality large-size graphene film was first prepared by the chemical vapor deposition (CVD) method; then, graphene film was transferred to SiO2/Si substrate; next, the graphene/WS2 and graphene/MoS2 hetero-structures were prepared by the atmospheric pressure chemical vapor deposition method, which can be achieved by directly growing WS2 and MoS2 material on graphene/SiO2/Si substrate. Finally, the test characterization of graphene/TMDs hetero-structures was performed by AFM, SEM, EDX, Raman and PL spectroscopy to obtain and grasp the morphology and luminescence laws. The test results show that graphene/TMDs vdWs hetero-structures have the very excellent film quality and spectral characteristics. There is the built-in electric field at the interface of graphene/TMDs heterojunction, which can lead to the effective separation of photo-generated electron-hole pairs. Monolayer WS2 and MoS2 material have the strong broadband absorption capabilities, the photo-generated electrons from WS2 can transfer to the underlying p-type graphene when graphene/WS2 hetero-structures material is exposed to the light, and the remaining holes can induced the light gate effect, which is contrast to the ordinary semiconductor photoconductors. The research on spectral characteristics of graphene/TMDs hetero-structures can pave the way for the application of novel optoelectronic devices.
Prostate cancer is highly prevalent worldwide. Androgen deprivation therapy (ADT) remains the treatment of choice for incurable prostate cancer, but majority of patients develop disease recurrence following ADT. There is therefore an urgent need for early detection of treatment resistance.
Isogenic androgen-responsive (CWR22Res) and castration-resistant (22Rv1) human prostate cancer cells were implanted into the anterior lobes of the prostate in CD-1 Nu mice to generate prostate orthografts. Castrated mice bearing CWR22Res and 22Rv1 orthografts mimic clinical prostate cancer following acute and chronic ADT, respectively.
F-Fluciclovine (1-amino-3-fluorocyclobutane-1-carboxylic acid) with a radiochemical purity of > 99% was produced on a FASTlab synthesiser. Ki67 staining in endpoint orthografts was studied. check details Western blot, quantitative RT-PCR and next-generation sequencing transcriptomic analyses were performed to assess the expression levels of amino acid transporters (including LAT1 and ASCT2, which le SLC1A5 was preferentially expression in CWR22Res tumours following acute ADT. Additional AATs such as SLC43A2 (LAT4) were shown to be upregulated following chronic ADT by transcriptomic analysis; their role in Fluciclovine uptake warrants investigation.
We studied in vivo
F-Fluciclovine uptake in human prostate cancer orthograft models following acute and chronic ADT.
F-Fluciclovine uptakes highlight tumour heterogeneity that may explain castration resistance and can be exploited as a clinical biomarker.
We studied in vivo 18F-Fluciclovine uptake in human prostate cancer orthograft models following acute and chronic ADT. 18F-Fluciclovine uptakes highlight tumour heterogeneity that may explain castration resistance and can be exploited as a clinical biomarker.The microRNA let-7d has been reported to be a tumor suppressor in renal cell carcinoma (RCC). Tumor-associated macrophages (TAM) are M2-polarized macrophages that can enhance tumor growth and angiogenesis in many human cancers. However, the role of let-7d in TAM-associated RCC progression remains elusive. First, we observed a strongly inverse correlation between let-7d expression and microvessel density in RCC tissues. Furthermore, the proliferation, migration, and tube formation of HUVECs were significantly inhibited by conditioned medium from a coculture system of the phorbol myristate acetate pretreated human THP-1 macrophages and let-7d-overexpressing RCC cells. Moreover, the proportion of M2 macrophages was significantly lower in the group that was cocultured with let-7d-overexpressing RCC cells. Subcutaneous xenografts formed by the injection of let-7d-overexpressing RCC cells together with THP-1 cells resulted in a significant decrease in the M2 macrophage ratio and microvessel density compared with those formed by the injection of control RCC cells with THP-1 cells. In silico and experimental analysis revealed interleukin-10 (IL-10) and IL-13 as let-7d target genes. Importantly, the addition of IL-10 and IL-13 counteracted the inhibitory effects of the conditioned medium from the coculture system with let-7d-overexpressing RCC cells in vitro. Additionally, overexpression of IL-10 and IL-13 reversed the effects of let-7d on macrophage M2 polarization and tumor angiogenesis in vivo. Finally, the expression of IL-10 and IL-13 were inversely correlated with the expression of let-7d in RCC clinical specimens. These results suggest that let-7d may inhibit intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-10 and IL-13.
Based on the biological mechanisms underlying the obesity-breast cancer connections, potential protein biomarkers involved in breast cancer development have been identified, which may be helpful for the estimation of breast cancer risk. This study aimed to carry out a comprehensive overview of systematic reviews on circulating levels of obesity-related protein biomarkers for female breast cancer risk to provide a solid reference for potential breast cancer predictors.
Comprehensive literature searches were conducted in MEDLINE, EMBASE and Cochrane Database of Systematic Reviews up to Dec 2019. The AMSTAR tool was used for the methodological quality assessment of the included systematic reviews. Evidence was reported narratively.
A total of 28 relevant systematic reviews which were mostly of moderate quality were included in the overview. Protein biomarkers relating to adipokines, insulin/insulin-like growth factor-1 (IGF-1) axis, inflammatory cytokines and sex hormones were investigated. Higher levels of circulating IGF-1, IGF-binding protein-3, leptin and resistin were found to be associated with an increased risk of premenopausal breast cancer; lower levels of circulating adiponectin and higher levels of circulating c-reactive protein, leptin, and resistin were found to be associated with an increased risk of postmenopausal breast cancer.