Lindhardtvega7236

Z Iurium Wiki

Starting from the quantum-phase-estimate (QPE) algorithm, a method is proposed to construct entangled states that describe correlated many-body systems on quantum computers. selleckchem Using operators for which the discrete set of eigenvalues is known, the QPE approach is followed by measurements that serve as projectors on the entangled states. These states can then be used as inputs for further quantum or hybrid quantum-classical processing. When the operator is associated with a symmetry of the Hamiltonian, the approach can be seen as a quantum-computer formulation of symmetry breaking followed by symmetry restoration. The method, called discrete spectra assisted, is applied to superfluid systems. By using the blocking technique adapted to qubits, the full spectra of a pairing Hamiltonian is obtained.The gap of the Liouvillian spectrum gives the asymptotic decay rate of a quantum dissipative system, and therefore its inverse has been identified as the slowest relaxation time. Contrary to this common belief, we show that the relaxation time due to diffusive transports in a boundary dissipated many-body quantum system is determined not by the gap or low-lying eigenvalues of the Liouvillian but by superexponentially large expansion coefficients for Liouvillian eigenvectors with nonsmall eigenvalues at an initial state. This finding resolves an apparent discrepancy reported in the literature between the inverse of the Liouvillian gap and the relaxation time in dissipative many-body quantum systems.We combine the anisotropy of magnetic interactions and the point symmetry of finite solids in the study of dipolar clusters as new basic units for multiferroics metamaterials. The Hamiltonian of magnetic dipoles with an easy axis at the vertices of polygons and polyhedra, maps exactly into a Hamiltonian with symmetric and antisymmetric exchange couplings. The last one gives rise to a Dzyaloshinskii-Moriya contribution responsible for the magnetic modes of the systems and their symmetry groups, which coincide with those of a particle in a crystal field with spin-orbit interaction. We find that the clusters carry spin current and that they manifest the magnetoelectric effect. We expect our results to pave the way for the rational design of magnetoelectric devices at room temperature.Processes commonly studied at the Large Hadron Collider (LHC) are induced by quarks and gluons inside the protons of the LHC beams. In this Letter, we demonstrate that, since protons also contain leptons, it is possible to target lepton-induced processes at the LHC as well. In particular, by picking a lepton from one beam and a quark from the other beam, we present for the first time a comprehensive analysis of resonant single leptoquark (LQ) production at a hadron collider. In the case of minimal scalar LQs, we derive novel bounds that arise from the LHC Run II considering all possible flavor combinations of an electron or a muon and an up (u), a down (d), a strange, or a charm quark. For the flavor combinations with a u or a d quark, the obtained limits represent the most stringent constraints to date on LQs of this type. The prospects of our method at future LHC runs are also explored. Given the discovery reach of the proposed LQ signature, we argue that dedicated resonance searches in final states featuring a single light lepton and a single light-flavor jet should be added to the exotics search canon of both the ATLAS and the CMS Collaborations.We present a class of Hamiltonians H for which a sector of the Hilbert space invariant under a Lie group G, which is not a symmetry of H, possesses the essential properties of many-body scar states. These include the absence of thermalization and the "revivals" of special initial states in time evolution. A particular class of examples concerns interacting spin-1/2 fermions on a lattice consisting of N sites (it includes deformations of the Fermi-Hubbard model as special cases), and we show that it contains two families of N+1 scar states. One of these families, which was found in recent literature, comprises the well-known η-pairing states. We find another family of scar states that is U(N) invariant. Both families and most of the group-invariant scar states produced by our construction, in general, give rise to the off-diagonal long range order, which survives at high temperatures and is insensitive to the details of the dynamics. Such states could be used for reliable quantum information processing because the information is stored nonlocally and thus cannot be easily erased by local perturbations. In contrast, other scar states we find are product states, which could be easily prepared experimentally. The dimension of scar subspace is directly controlled by the choice of group G and can be made exponentially large.The stereoselective β-C(sp2)-H arylation of various acyclic enamides with arylsilanes via Rh(III)-catalyzed cross-coupling reaction was illustrated. The methodology was characterized by extraordinary efficacy and stereoselectivity, a wide scope of substrates, good functional group tolerance, and the adoption of environmentally friendly arylsilanes. The utility of this present method was evidenced by the gram-scale synthesis and further elaboration of the product. In addition, Rh(III)-catalyzed C-H activation is considered to be the critical step in the reaction mechanism.The hydrophilic/hydrophobic interactions of water are important in biological and chemical self-assembly phenomena. Water clusters in hydrophobic environments exhibit a unique morphology. Their process of formation and nonpolar properties have been extensively studied, but no direct experimental evidence has been available until now. link2 This study provides spectroscopic evidence for the transformation of water to nonpolar configuration via clustering. Although individual water molecules form hydrogen bonds with the hydroxyl protons of n-hexanol when codissolved in a nonpolar solvent (toluene-d8), the water clusters are comprised solely of hydrogen bonds between water molecules and do not form hydrogen bonds with the hydroxyl protons of n-hexanol. This behavior indicates that the water clusters are nonpolar rather than polar. This study reports the first example of nonpolar water configuration produced via a liquid-state clustering. This property is a common and important interfacial phenomenon of water in chemistry, biology, materials science, geology, and meteorology.It is promising yet challenging to develop efficient methods to separate nanoparticles (NPs) with nanochannel devices. Herein, in order to guide and develop the separation method, the thermodynamic mechanism of NP penetration into solvent-filled nanotubes is investigated by using classical density functional theory. The potential of mean force (PMF) is calculated to evaluate the thermodynamic energy barrier for NP penetration into nanotubes. The accuracy of the theory is validated by comparing it with parallel molecular dynamics simulation. By examining the effects of nanotube size, solvent density, and substrate wettability on the PMF, we find that a large tube, a low bulk solvent density, and a solvophilic substrate can boost the NP penetration into nanotubes. In addition, it is found that an hourglass-shaped entrance can effectively improve the NP penetration efficiency compared with a square-shaped entrance. Furthermore, the minimum separation density of NPs in solution is identified, below which the NP penetration into nanotubes requires an additional driving force. Our findings provide fundamental insights into the thermodynamic barrier for NP penetration into nanotubes, which may provide theoretical guidance for separating two components using microfluidics.Halide double perovskites are an interesting alternative to Pb-containing counterparts as active materials in optoelectronic devices. Low-dimensional double perovskites are fabricated by introducing large organic cations, resulting in organic/inorganic architectures with one or more inorganic octahedra layers separated by organic cations. Here, we synthesized layered double perovskites based on 3D Cs2AgBiBr6, consisting of double (2L) or single (1L) inorganic octahedra layers, using ammonium cations of different sizes and chemical structures. Temperature-dependent Raman spectroscopy revealed phase transition signatures in both inorganic lattice and organic moieties by detecting variations in their vibrational modes. Changes in the conformational arrangement of the organic cations to an ordered state coincided with a phase transition in the 1L systems with the shortest ammonium moieties. Significant changes of photoluminescence intensity observed around the transition temperature suggest that optical properties may be affected by the octahedral tilts emerging at the phase transition.The asymmetric synthesis of chiral benzo-ring containing compounds through enantioselective intramolecular arylation of unbiased methylene C(sp3)-H bonds was reported. Judicious choice of non-C2-symmetric chiral phosphoric acid (CPA) ligand is crucial for the high reactivity and enantioselectivity. The slight decrease in enantioselectivity at the late stage of the reaction was attributed to the hydrolysis of CPA ligands to the corresponding BINOL.In parallel to the burgeoning field of soft electronics, soft plasmonics focuses on the design and fabrication of plasmonic structures supported on elastomers and to understand how their properties respond to mechanical deformations. Here, we report on a partial ligand-stripping strategy to fabricate elastomer-supported gold nanobipyramid (NBP) plasmene nanosheets. Unlike spherelike building blocks, NBP-building blocks display complex orientation-dependent plasmonic responses to external strains. By collecting polarized plasmonic resonance spectra in conjunction with electrostatic eigenmode modeling, we reveal simultaneous changes in interparticle spacing and spatial orientations of NBP building blocks under mechanical strains. Such changes are directly related to initial NBP packing orders. Further analysis of strain sensitivities for various NBP plasmenes indicated that plasmonic spectra of ∼45° oriented samples are mostly susceptible to strain at acute polarized angles. The results presented may enable novel applications in future soft optoelectronic devices in sensing, encryption, and data storage.An efficient and straightforward gold-catalyzed protocol for the synthesis of 2-substituted 4-oxo-4-arylbutanal derivatives from commercially available or easily accessible alkynes and vinylsulfoxide substrates has been developed. Extension of the methodology to the use of 1-cycloalkenyl sulfoxides allowed the facile synthesis of five-, six-, and seven-membered-ring cycloalkyl-1-one backbone. Subsequently, the tetrahydrocycloalkyl[b]pyrrole derivatives, which are found in many active pharmaceutical ingredients, were isolated in good yields. Mechanistic investigation highlighted a [3,3]-sigmatropic rearrangement of a sulfonium intermediate in this process.A detailed and systematic quantum-chemical calculation has been performed with high-level density functional theory (DFT) to analyze the electrostatic interaction of methanesulfonic acid (CH3SO3H), also known as MSA, with pre-formed clusters of sulfuric acid (H2SO4) molecules in ambient conditions. link3 Both MSA and H2SO4 are considered as atmospheric molecules that might play active roles in aerosol formation. The interactions between MSA and H2SO4 clusters lead to the formation of MSA···(H2SO4) n (n = 2, 3) complexes stabilized by the formation of different types of intermolecular hydrogen bond networks. Analyses of cluster binding energies and free energy changes associated with their formation indicate that MSA could bring additional stability into the atmospheric molecular clusters responsible for aerosol formation. Variations of Gibbs free energy with temperature and pressure have been analyzed. The lower temperatures and pressures at the higher altitudes of the troposphere are found to play in favor of higher stability of the MSA···(H2SO4) n clusters.

Autoři článku: Lindhardtvega7236 (Waugh McConnell)