Lillelundtillman8769
Our findings reveal a molecular mechanism by which a central signalling hub is shared but differentially modulated by diverse signalling pathways using distinct phosphorylation codes that can be specified by upstream protein kinases.The RNA modification N6-methyladenosine (m6A) has critical roles in many biological processes1,2. However, the function of m6A in the early phase of mammalian development remains poorly understood. Here we show that the m6A reader YT521-B homology-domain-containing protein 1 (YTHDC1) is required for the maintenance of mouse embryonic stem (ES) cells in an m6A-dependent manner, and that its deletion initiates cellular reprogramming to a 2C-like state. Mechanistically, YTHDC1 binds to the transcripts of retrotransposons (such as intracisternal A particles, ERVK and LINE1) in mouse ES cells and its depletion results in the reactivation of these silenced retrotransposons, accompanied by a global decrease in SETDB1-mediated trimethylation at lysine 9 of histone H3 (H3K9me3). We further demonstrate that YTHDC1 and its target m6A RNAs act upstream of SETDB1 to repress retrotransposons and Dux, the master inducer of the two-cell stage (2C)-like program. This study reveals an essential role for m6A RNA and YTHDC1 in chromatin modification and retrotransposon repression.Symmetric cell division requires the even partitioning of genetic information and cytoplasmic contents between daughter cells. Whereas the mechanisms coordinating the segregation of the genome are well known, the processes that ensure organelle segregation between daughter cells remain less well understood1. Here we identify multiple actin assemblies with distinct but complementary roles in mitochondrial organization and inheritance in mitosis. First, we find a dense meshwork of subcortical actin cables assembled throughout the mitotic cytoplasm. This network scaffolds the endoplasmic reticulum and organizes three-dimensional mitochondrial positioning to ensure the equal segregation of mitochondrial mass at cytokinesis. Second, we identify a dynamic wave of actin filaments reversibly assembling on the surface of mitochondria during mitosis. Mitochondria sampled by this wave are enveloped within actin clouds that can spontaneously break symmetry to form elongated comet tails. Mitochondrial comet tails promote randomly directed bursts of movement that shuffle mitochondrial position within the mother cell to randomize inheritance of healthy and damaged mitochondria between daughter cells. Thus, parallel mechanisms mediated by the actin cytoskeleton ensure both equal and random inheritance of mitochondria in symmetrically dividing cells.The lipid chemoattractant sphingosine 1-phosphate (S1P) guides cells out of tissues, where the concentration of S1P is relatively low, into circulatory fluids, where the concentration of S1P is high1. For example, S1P directs the exit of T cells from lymph nodes, where T cells are initially activated, into lymph, from which T cells reach the blood and ultimately inflamed tissues1. T cells follow S1P gradients primarily using S1P receptor 1 (ref. 1). Recent studies have described how S1P gradients are established at steady state, but little is known about the distribution of S1P in disease or about how changing levels of S1P may affect immune responses. Here we show that the concentration of S1P increases in lymph nodes during an immune response. We found that haematopoietic cells, including inflammatory monocytes, were an important source of this S1P, which was an unexpected finding as endothelial cells provide S1P to lymph1. Inflammatory monocytes required the early activation marker CD69 to supply this S1P, in part because the expression of CD69 was associated with reduced levels of S1pr5 (which encodes S1P receptor 5). CD69 acted as a 'stand-your-ground' signal, keeping immune cells at a site of inflammation by regulating both the receptors and the gradients of S1P. Finally, increased levels of S1P prolonged the residence time of T cells in the lymph nodes and exacerbated the severity of experimental autoimmune encephalomyelitis in mice. This finding suggests that residence time in the lymph nodes might regulate the differentiation of T cells, and points to new uses of drugs that target S1P signalling.The behaviour of an animal is determined by metabolic, emotional and social factors1,2. Depending on its state, an animal will focus on avoiding threats, foraging for food or on social interactions, and will display the appropriate behavioural repertoire3. Moreover, survival and reproduction depend on the ability of an animal to adapt to changes in the environment by prioritizing the appropriate state4. Although these states are thought to be associated with particular functional configurations of large-brain systems5,6, the underlying principles are poorly understood. Here we use deep-brain calcium imaging of mice engaged in spatial or social exploration to investigate how these processes are represented at the neuronal population level in the basolateral amygdala, which is a region of the brain that integrates emotional, social and metabolic information. We demonstrate that the basolateral amygdala encodes engagement in exploratory behaviour by means of two large, functionally anticorrelated ensembles that exhibit slow dynamics. We found that spatial and social exploration were encoded by orthogonal pairs of ensembles with stable and hierarchical allocation of neurons according to the saliency of the stimulus. These findings reveal that the basolateral amygdala acts as a low-dimensional, but context-dependent, hierarchical classifier that encodes state-dependent behavioural repertoires. This computational function may have a fundamental role in the regulation of internal states in health and disease.Meiotic processes are potentially dangerous to genome stability and could be disastrous if activated in proliferative cells. Here we show that two key meiosis-defining proteins, the topoisomerase Spo11 (which forms double-strand breaks) and the meiotic cohesin Rec8, can dismantle centromeres. SC-43 research buy This dismantlement is normally observable only in mutant cells that lack the telomere bouquet, which provides a nuclear microdomain conducive to centromere reassembly1; however, overexpression of Spo11 or Rec8 leads to levels of centromere dismantlement that cannot be countered by the bouquet. Specific nucleosome remodelling factors mediate centromere dismantlement by Spo11 and Rec8. Ectopic expression of either protein in proliferating cells leads to the loss of mitotic kinetochores in both fission yeast and human cells. Hence, while centromeric chromatin has been characterized as extraordinarily stable, Spo11 and Rec8 challenge this stability and may jeopardize kinetochores in cancers that express meiotic proteins.