Lillelundgodfrey3142

Z Iurium Wiki

In recent years, great technological advances have been achieved in the growth of hybrid organic-inorganic perovskites (HOIPs) and these have attracted extensive attention due to their optoelectronic properties, structural tunability and stability. learn more We present here a new two-dimensional hybrid organic-inorganic perovskite, namely, poly[bis(3-fluorocyclobutylammonium) [di-μ-iodido-diiodidoplumbate(VI)]], (C4H9FN)2[PbI4]n, showing a two-dimensional reticular layer with the organic cations in the middle of the meshes. The calculated experimental band gap is 2.44 eV and the band gap is calculated as 2.20 eV theoretically, which further suggests the potential of this compound as a semiconductor.(-)-Epigallocatechin gallate (EGCG), the main component of green tea extract, displays multiple biological activities. However, it cannot be used as a drug due to its low cellular absorption, instability and metabolic degradation. Therefore, there is a need to provide analogs that can overcome the limitations of EGCG. In this work, six synthetic analogs of EGCG sharing a common tetralindiol dibenzoate core were synthesized and fully characterized by 1H NMR, 13C NMR, HRMS and IR spectroscopies, and X-ray crystallography. These are (2R,3S)-1,2,3,4-tetrahydronaphthalene-2,3-diyl bis[3,4,5-tris(benzyloxy)benzoate], C66H56O10, and the analogous esters bis(3,4,5-trimethoxybenzoate), C30H32O10, bis(3,4,5-trifluorobenzoate), C24H14F6O4, bis[4-(benzyloxy)benzoate], C38H32O6, bis(4-methoxybenzoate), C26H24O6, and bis(2,4,6-trifluorobenzoate), C24H14F6O4. Structural analysis revealed that the molecular shapes of these dibenzoate esters of tetralindiol are significantly different from that of previously reported dimandelate esters or monobenzoate esters, as the acid moieties extend far from the bicyclic system without folding back over the tetralin fragment. Compounds with small fluorine substituents take a V-shape, whereas larger methoxy and benzyloxy groups determine the formation of an L-shape or a cavity. Intermolecular interactions are dominated by π-π stacking and C-H...π interactions involving the arene rings in the benzoate fragment and the arene ring in the tetrahydronaphthalene moiety. All six crystal structures are determined in centrosymmetric space groups (either P-1, P21/n, C2/c or I2/a).The FeIII ion as a ubiquitous metal plays a key role in biochemical processes. Iron deficiency or excess in the human body can induce various diseases. Thus, effective detection of the FeIII ion has been deemed an issue of focus. To develop more crystalline chemical sensors for the selective detection of Fe3+, two novel two-dimensional (2D) coordination polymers, namely, poly[[[μ-bis(pyridin-4-yl)amine-κ2NN'](μ-naphthalene-2,6-dicarboxylato-κ2O2O6)zinc(II)] 0.5-hydrate], [Zn(C12H6O4)(C10H9N3)]·0.5H2On, 1, and poly[(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')(μ-naphthalene-2,6-dicarboxylato-κ2O2O6)hemi(μ-naphthalene-2,6-dicarboxylic acid-κ2O2O6)copper(II)] [Cu(C12H6O4)(C12H12N2)(C12H8O4)0.5]n, 2, have been prepared using solvothermal methods. Single-crystal X-ray diffraction analysis shows that compound 1 is an undulating twofold interpenetrated 2D (4,4)-sql network and compound 2 is a twofold interpenetrated 2D honeycomb-type network with a (6,3)-hcb topology. In addition, 1 exhibits highly selective sensing for the Fe3+ ion.A new caesium sodium samarium borate phosphate, CsNa2Sm2(BO3)(PO4)2, has been obtained successfully by the high-temperature solution growth (HTSG) method and single-crystal X-ray diffraction analysis reveals that it crystallizes in the orthorhombic space group Cmcm. The structure contains BO3, PO4, NaO7 and SmO7 polyhedra which are interconnected via corner- or edge-sharing O atoms to form a three-dimensional [Na2Sm2(BO3)(PO4)2]∞ network. This network delimits large cavities where large Cs+ cations reside to form the total structure. Under 402 nm light excitation, CsNa2Sm2(BO3)(PO4)2 exhibits three emission bands due to the 4f→4f transitions of Sm3+. Furthermore, we introduced Gd3+ into Sm3+ sites to optimize the Sm3+ concentration and improve the luminescence intensity. The optimal concentration is Gd/Sm = 98/2. The luminescent lifetime of a series of CsNa2Gd2(1-x)Sm2x(BO3)(PO4)2 phosphors shows a gradual degradation of lifetime from 2.196 to 0.872 ms for x = 0.01-0.10. The Commission Internationale de l'Eclairage (CIE) 1931 calculation reveals that CsNa2Gd1.96Sm0.04(BO3)(PO4)2 can emit orange light under 402 nm excitation.A novel polyoxomolybdate with a diprotonated porphyrin as counter-cation, namely, 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,22H,23H,24H-porphine(2+) hexamolybdate(VI) pentahydrate, (C48H32N4O8)[Mo6O19]·5H2O or (H2TCPP)[Mo6O19]·5H2O, I, was prepared via the hydrothermal reaction of MoCl5, 5,10,15,20-tetrakis(4-carboxyphenyl)-21H,23H-porphine (TCPP) and distilled water. The crystal structure of hydrated polyoxometalate (POM) salt I was characterized by single-crystal X-ray diffraction. The compound is characterized by an isolated (zero-dimensional, 0D) structure, because it cannot extend via covalent bonds. The structure contains one [Mo6O19]2- anion, one (H2TCPP)2+ cation and five lattice water molecules. Each of the Mo6+ ions is six-coordinated and displays a distorted octahedral motif. The (H2TCPP)2+ cation displays a distorted saddle motif. A three-dimensional (3D) supramolecular framework is formed via hydrogen-bonding interactions. The compound shows a red photoluminescence emission.The achiral tetrapeptide monohydrate N-(benzyloxycarbonyl)glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid monohydrate, Z-Gly-Aib-Gly-Aib-OH·H2O (Z is benzyloxycarbonyl, Aib is α-aminoisobutyric acid and Gly is glycine) or C20H28N4O7·H2O, exhibits two conformations related by the symmetry operation of an inversion centre. It adopts only one of two possible intramolecular hydrogen bonds in a type I (and I') β-turn and forms a maximum of intermolecular hydrogen bonds partly mediated by water. The space group, the molecular structure and the crystal packing differ from two already described (Gly-Aib)2 peptides which vary only in the protecting groups. This structure confirms the high structural flexibility of Gly-Aib peptides and points to a strong relationship between intermolecular hydrogen bonding and crystal quality and size.

Autoři článku: Lillelundgodfrey3142 (Schmitt Kamper)