Lerchestrauss4712

Z Iurium Wiki

In water and gut microbiomes OTC effects were also attenuated after exposure ceases, indicating a recovery. Even so, the structure of water exposed community remained significantly different towards the control, while richness of this community significantly increased at 1mPE. During exposure the relative abundance of 11 and 16 genera was significantly affected in the gut and water microbiomes, respectively, though these numbers decreased to 4 and 8 genera in the post-exposure period. At functional level during exposure 12 and 13 pathways were predicted to be affected in zebrafish gut and water microbiomes respectively, while post-exposure few pathways remained significantly affected. Hence, our results suggest a recovery of the fish fitness as well as of the water and intestine microbiomes after exposure ceases. Even so, some of the effects caused by OTC remain significant after this recovery period.Rural residential emissions contribute significantly to regional air pollution in China, but our understanding on how residential solid fuel burning influences the village outdoor air quality is limited. In this study, we compared the fine particulate matter (PM2.5) composition and individual particle characteristics from 11 to 18 January 2017 at a village and an urban site in northern China. At the village site, each day was divided into four periods cooking (0730-1000; 1600-1700), daytime (1000-1600), heating (1700-2400), and midnight (0000-0730) periods. The highest PM2.5 concentration occurred during the cooking period (236 ± 88 μg m-3), which was characterized by high concentrations of K+ and abundant primary OM-K particles (i.e., organic matter mixed with K-salts) emitted from residential biomass burning. The second highest PM2.5 concentration was found during the heating period (161 ± 97 μg m-3), and the PM2.5 contained abundant spherical primary OM particles (i.e., tarballs) emitted from residential coal burning. The primary emissions from residential solid fuel burning resulted in 75% of the village OM by mass consisting of primary OM and 67% of the village aerosol particles by number internally mixing with primary OM particles. The village PM2.5 composition was different from that of the urban PM2.5, with the former containing more OM (47% vs 32%) and less secondary inorganic ions (30% vs 46%). Individual primary OM-K and tarballs were abundant in the village air. These results suggest a large contribution of village residential emissions in the winter to village air pollution. Our study highlights that the residential health in villages of northern China should be paid more attention because of high PM2.5 concentrations and abundant toxic particles during the cooking and heating periods per day in winter.Urban green infrastructure is closely linked to the alleviation of pollution from atmospheric particulate matter. Although particle deposition has been shown to depend on leaf characteristics, the findings from earlier studies are sometimes ambiguous due to the lack of controlling variables. In this study, we investigated the impact of leaf morphological characteristics on PM2.5 dry deposition velocity by employing a control-variable approach. We focused on four indices trichome density, petiole length, aspect ratio (width-to-length ratio), and fractal deviation. For each index, tree species were chosen from the same family or genus to minimize the influence of other factors and make a group of treatments for an individual index. learn more The dry deposition velocities of PM2.5 were determined through application of an indirect method. The results revealed that the presence of leaf trichomes had a positive effect on PM2.5 dry deposition velocity, and a higher trichome density also led to a greater particle deposition velocity. Lower leaf aspect ratio, shorter petioles, and higher leaf fractal deviation were associated with greater PM2.5 dry deposition velocity. The control-variable approach allows to investigate the correlation between deposition velocity and a certain leaf characteristic independently while minimizing the effects of others. Thus, our study can clarify how a single leaf characteristic affects particle deposition velocity, and expound its potential mechanism more scientifically than the published studies. Our research points out the importance of controlling variables, and also provides ideas for future researches on related factors to be found. Meanwhile the results would help provide insight into design improvements or adaptive management for the alleviation of air pollution.Plastic residues have become a serious environmental problem in areas where agricultural plastic film are used intensively. Although numerous of studies have been done to assess its impacts on soil quality and crop yields, the understanding of meso-plastic particles effects on plant is still limited. In this study, low density polyethylene (PE) and biodegradable plastic (Bio) mulch film were selected to study the effects of meso-plastic debris on soybean germination and plant growth with the accumulation levels of 0%, 0.1%, 0.5% and 1% in soil (w w, size ranging 0.5-2 cm) by a pot experiment under field condition. Results showed that the germination viability of soybean seeds was reduced to 82.39%, 39.44% and 26.06% in the treatments with 0.1%, 0.5% and 1% added plastic debris compared to the control (CK), respectively, suggesting that plastic residues in soil inhibit the viability of soybean seed germination. The plastic debris had a significant negative effect on plant height and culm diameter during the entire growth stage of soybean. Similarly, the leaf area at harvest was reduced by 1.97%, 6.86% and 11.53% compared to the CK in the treatments with 0.1%, 0.5% and 1% plastic debris addition, respectively. In addition, the total plant biomass under plastic addition was reduced in both the flowering and harvesting stages, compared to the CK. For the different type of plastic residues, plant height, leaf area and root/shoot ratio at group PE were significantly lower than those of groups treated by Bio. In conclusion, PE debris had a greater negative effects on plant height, culm diameter, leaf area and root/shoot ratio while Bio debris mainly showed the adverse effects on germination viability and root biomass especially at the flowering stage. Therefore, further research is required to elaborate plastic particles' effects on different stages of crops and soil quality.

Autoři článku: Lerchestrauss4712 (Mcclure Dahlgaard)