Lehmanbain1003
formulations with proven cytotoxicity in human breast cancer cell lines in vitro.Magnesium stearate (MgSt) is a common lubricant used in tablet formulations to facilitate tablet manufacturing by reducing ejection force. The use of MgSt in tablet formulation is known to potentially deteriorate tabletability of plastic powders and slow down drug dissolution. Here, we report surprisingly profound deterioration in tabletability of microcrystalline cellulose by hand-mixing. We also show that the hand mixing process is highly variable. To ensure the reproducibility of tabletability assessment of powders, hand-mixing should be used with caution. For research that employs hand mixing, mixing procedure should be carefully controlled and reported.Immune checkpoint inhibitors (ICIs), like monoclonal antibodies of PD-1, CTLA-4, and their ligands, are effective only in some populations of patients with cancer, because the immunosuppressive state of the tumor microenvironment (TME) in some patients cannot be effectively reversed after ICI therapy. Sialic acid (SA) receptors in the Siglec family are highly expressed on the surface of tumor-associated macrophages (TAMs) and most have immunosuppressive effects. Therefore, targeting TAMs (the siglec axis) to reverse tumor immunosuppression may provide a new direction for the development of novel tumor immunotherapies. We designed a Zoledronic acid (ZA)-loaded liposome modified by a SA-octadecylamine conjugate (ZA-SL) to act as a novel nanomedicine delivery platform. This platform can efficiently deliver ZA to TAMs through the combination of SA and Siglec-1 and exerts specific cytotoxicity or phenotypic remodeling of M2-like TAMs depending on the drug concentration in TAMs. In vivo experiments showed that ZA-SL had good TAM targeting ability, and after treatment, the S180 tumors of mice were significantly inhibited, and the proportion of M1-like TAMs was significantly higher than that of M2-like TAMs with no significant adverse reactions in mice. Therefore, SA-modified ZA-loaded liposomes may provide a promising strategy for cancer immunotherapy.Large-pore mesoporous silica (LPMS) microspheres with tunable pore size have received intensive interest in the field of drug delivery due to their high storage capacity and fast delivery rate of drugs. In this work, a facile salt-assisted spray-drying method has been developed to fabricate LPMS microspheres using continuous spray-drying of simple inorganic salts as pore templates and colloidal SiO2 nanoparticles as building blocks, followed by washing with water to remove the templates. BAY 85-3934 chemical structure More importantly, the porosity of the LPMS microspheres can be finely tuned by adjusting the furnace temperature and relative concentration of the salt to SiO2, which could lead to optimal pharmaceutical outcomes. Then, the biological roles of these LPMS microspheres were evaluated in antibacterial and cancer therapy. In this regard, rhodamine b as a probe was initially loaded inside the LPMS microspheres. The obtained particles not only showed high entrapment efficiency (up to 30%) and a pH-responsive drug release but also presented pore-size-controlled drug release performance. Then, in vitro antibacterial activities of multiple antibiotics, namely nalidixic acid, chloramphenicol, and ciprofloxacin, loaded in the LPMS particles were investigated against two pathogenic bacteria, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The results indicated bacterial inhibition up to 70% and 20% in less than 2 h for Escherichia coli and Staphylococcus aureus, respectively. This inhibition of bacterial growth was accompanied by no bacterial regrowth within 30 h. Finally, the versatility of LPMS microspheres as drug carriers in pancreatic cancer treatment was explored. In this regard, a pro-apoptotic NCL antagonist agent (N6L) as an antitumor agent was successfully loaded onto LPMS microspheres. Interestingly, the resulting particles showed pore-size-dependent anticancer activity with inhibition of cancer cell growth up to 60%.Alzheimer's disease (AD) is the most common form of dementia, which causes progressive memory loss and cognitive decline. Effective strategies to treat or prevent remains one of the most challenging undertakings in the medical field. AD is a complex and multifactorial disease that involves several risk factors. Aging and genetic factors both play important roles in the onset of the AD, however; certain environmental factors have been reported to increase the risk of AD. Chronic exposure to toxins has been seen as an environmental factor that may increase the risk of developing a neurodegenerative disease such as AD. Exposure to metals and biotoxins produced by bacteria, molds, and viruses may contribute to the cognitive decline and pathophysiology associated with AD. Toxins may contribute to the pathology of the disease through various mechanisms such as deposition of amyloid-beta (Aβ) plaques and tangles in the brain, induction of apoptosis, inflammation, or oxidative damage. Here, we will review how toxins affect brain physiology with a focus on mechanisms by which toxins may contribute to the development and progression of AD. A better understanding of these mechanisms may help contribute towards the development of an effective strategy to slow the progression of AD.Appropriate animal models are necessary to determine the molecular and cellular mechanisms underlying attention-deficit/hyperactivity disorder (ADHD). This study used a battery of behavioral tests to compare Lister hooded rats (LHRs), an old outbred strain frequently used for autistic epilepsy research, with Wistar rats and spontaneously hypertensive rats (SHRs), a commonly used ADHD model. The open field, elevated plus maze, light/dark box, and drop tests demonstrated that LHRs were the most hyperactive animals and displayed the most inattentive- and impulsive-like behaviors, which are characteristics of ADHD. The radial arm maze, social interaction, and Morris water maze tests showed that LHRs did not display deficits characteristic of autism or intellectual disability. Although LHRs did not show different monoamine contents, the mRNA expression levels of various genes linked to ADHD (Cdh13, Drd5, Foxp2, Maoa, Sema6d, Slc9a9, and St3gal3) and tyrosine hydroxylase protein expression levels were lower in the prefrontal cortex of LHRs compared with that of Wistar rats or SHRs. c-Fos, synapsin I, and tau protein expression levels in the prelimbic region of the medial prefrontal cortex were also increased in LHRs compared with Wistar rats. Atomoxetine and guanfacine, commonly used non-stimulant treatments for ADHD, ameliorated ADHD-like behaviors in LHRs. These results suggest that LHRs can serve as a better ADHD model to develop novel pharmacological interventions.Exposure to chronic stress precipitates depression and anxiety. Stress-induced responses are differentially regulated by the prefrontal cortex (PFC) and basolateral amygdala (BLA). For instance, repeated stress leads to hypertrophy of BLA, resulting in the emergence of affective symptoms. Chronic stress-induced changes in the metabolism of monoamines are central in the manifestation of affective symptoms. Interestingly, BLA via its reciprocal connections modulates prefrontal cortical monoaminergic responses to acute stress. However, the effects of BLA inactivation on chronic stress-induced affective behaviors and monoaminergic changes in the PFC are relatively unknown. Thus, we hypothesized that inactivation of BLA might prevent chronic immobilization stress (CIS)-induced depressive-, anxiety-like behaviors, and associated monoaminergic alterations in the prelimbic (PrL) and anterior cingulate cortex (ACC) subregions of PFC. We used two different BLA silencing strategies, namely ibotenic acid lesion and rever current study supports the hypothesis that combating amygdalar hyperactivity might be a viable strategy for the management of stress and associated affective disorders.DNA N6-methyladenine (6 mA) is an epigenetic modification that plays a vital role in a variety of cellular processes in both eukaryotes and prokaryotes. Accurate information of 6 mA sites in the Rosaceae genome may assist in understanding genomic 6 mA distributions and various biological functions such as epigenetic inheritance. Various studies have shown the possibility of identifying 6 mA sites through experiments, but the procedures are time-consuming and costly. To overcome the drawbacks of experimental methods, we propose an accurate computational paradigm based on a machine learning (ML) technique to identify 6 mA sites in Rosa chinensis (R.chinensis) and Fragaria vesca (F.vesca). To improve the performance of the proposed model and to avoid overfitting, a recursive feature elimination with cross-validation (RFECV) strategy is used to extract the optimal number of features (ONF) subset from five different DNA sequence encoding schemes, i.e., Binary Encoding (BE), Ring-Function-Hydrogen-Chemical Properties (RFHC), Electron-Ion-Interaction Pseudo Potentials of Nucleotides (EIIP), Dinucleotide Physicochemical Properties (DPCP), and Trinucleotide Physicochemical Properties (TPCP). Subsequently, we use the ONF subset to train a double layers of ML-based stacking model to create a bioinformatics tool named 'i6mA-stack'. This tool outperforms its peer tool in general and is currently available at http//nsclbio.jbnu.ac.kr/tools/i6mA-stack/.1-Deoxynojirumycin (1-DNJ) is a representative iminosugar with α-glucosidase inhibition (AGI) activity. In this study, the full genome sequencing of 1-DNJ-producing Bacillus velezensis K26 was performed. The genome consists of a circular chromosome (4,047,350 bps) with two types of putative virulence factors, five antibiotic resistance genes, and seven secondary metabolite biosynthetic gene clusters. Genomic analysis of a wide range of Bacillus species revealed that a 1-DNJ biosynthetic gene cluster was commonly present in four Bacillus species (B. velezensis, B. pseudomycoides, B. amyloliquefaciens, and B. atrophaeus). In vitro experiments revealed that the increased mRNA expression levels of the three 1-DNJ biosynthetic genes were closely related to increased AGI activity. Genomic comparison and alignment of multiple gene sequences indicated the conservation of the 1-DNJ biosynthetic gene cluster in each Bacillus species. This genomic analysis of Bacillus species having a 1-DNJ biosynthetic gene cluster could provide a basis for further research on 1-DNJ-producing bacteria.Although the prevalence of inflammatory bowel disease (IBD) has been increasing worldwide, the etiology remains elusive. Investigating oral microbiota dysbiosis is essential to understanding IBD pathogenesis. Our study evaluated variations in salivary microbiota and identified potential associations with IBD. The saliva microbiota of 22 IBD patients and 8 healthy controls (HCs) was determined using 16S ribosomal RNA (rRNA) gene sequencing and analyzed using QIIME2. A distinct saliva microbiota dysbiosis in IBD, characterized by alterations in microbiota biodiversity and composition, was identified. Saccharibacteria (TM7), Absconditabacteria (SR1), Leptotrichia, Prevotella, Bulleidia, and Atopobium, some of which are oral biofilm-forming bacteria, were significantly increased. Moreover, levels of inflammatory cytokines associated with IBD were elevated and positively correlated with TM7 and SR1. Functional variations include down-regulation of genetic information processing, while up-regulation of carbohydrate metabolism and protein processing in the endoplasmic reticulum in IBD.