Leblanccasey2160
Introduction Infections in hematological cancer patients are common and usually life-threatening; avoiding them could decrease morbidity, mortality, and cost. Genes associated with antineoplastics' pharmacokinetics or with the immune/inflammatory response could explain variability in infection occurrence. Objective To build a pharmacogenetic-based algorithm to predict the incidence of infections in patients undergoing cytotoxic chemotherapy. Methods Prospective cohort study in adult patients receiving cytotoxic chemotherapy to treat leukemia, lymphoma, or myeloma in two hospitals in Santiago, Chile. We constructed the predictive model using logistic regression. We assessed thirteen genetic polymorphisms (including nine pharmacokinetic-related genes and four inflammatory response-related genes) and sociodemographic/clinical variables to be incorporated into the model. The model's calibration and discrimination were used to compare models; they were assessed by the Hosmer-Lemeshow goodness-of-fit test and area under the ROC curve, respectively, in association with Pseudo-R2. Results We analyzed 203 chemotherapy cycles in 50 patients (47.8 ± 16.1 years; 56% women), including 13 (26%) with acute lymphoblastic and 12 (24%) with myeloblastic leukemia. Pharmacokinetics-related polymorphisms incorporated into the model were CYP3A4 rs2242480C>T and OAT4 rs11231809T>A. Immune/inflammatory response-related polymorphisms were TLR2 rs4696480T>A and IL-6 rs1800796C>G. Clinical/demographic variables incorporated into the model were chemotherapy type and cycle, diagnosis, days in neutropenia, age, and sex. The Pseudo-R2 was 0.56, the p-value of the Hosmer-Lemeshow test was 0.98, showing good goodness-of-fit, and the area under the ROC curve was 0.93, showing good diagnostic accuracy. Conclusions Genetics can help to predict infections in patients undergoing chemotherapy. This algorithm should be validated and could be used to save lives, decrease economic costs, and optimize limited health resources.Hyperglycemia exposure results in the dysfunction of endothelial cells (ECs) and the development of diabetic complications. Circular RNAs (circRNAs) have been demonstrated to play critical roles in EC dysfunction. The current study aimed to explore the role and mechanism of circRNA CLIP-associating protein 2 (circ_CLASP2, hsa_circ_0064772) on HG-induced dysfunction in human umbilical vein endothelial cells (HUVECs). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the levels of circ_CLASP2, miR-140-5p and F-box, and WD repeat domain-containing 7 (FBXW7). The stability of circ_CLASP2 was identified by the actinomycin D and ribonuclease (RNase) R assays. Cell colony formation, proliferation, and apoptosis were measured by a standard colony formation assay, colorimetric 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay, and flow cytometry, respectively. Western blot analysis was performed to determine the expression of related proteins. Targeted correlations among circ_CLASP2, miR-140-5p, and FBXW7 were confirmed by dual-luciferase reporter assay. High glucose (HG) exposure downregulated the expression of circ_CLASP2 in HUVECs. Circ_CLASP2 overexpression or miR-140-5p knockdown promoted proliferation and inhibited apoptosis of HUVECs under HG conditions. Circ_CLASP2 directly interacted with miR-140-5p via pairing to miR-140-5p. The regulation of circ_CLASP2 overexpression on HG-induced HUVEC dysfunction was mediated by miR-140-5p. Moreover, FBXW7 was a direct target of miR-140-5p, and miR-140-5p regulated HG-induced HUVEC dysfunction via FBXW7. Furthermore, circ_CLASP2 mediated FBXW7 expression through sponging miR-140-5p. Our current study suggested that the overexpression of circ_CLASP2 protected HUVEC from HG-induced dysfunction at least partly through the regulation of the miR-140-5p/FBXW7 axis, highlighting a novel therapeutic approach for the treatment of diabetic-associated vascular injury.Cystic fibrosis (CF) is an autosomal recessive disorder characterized by mutations in the cystic fibrosis transmembrane conductance regulator gene, which causes multifunctional defects that preferentially affect the airways. Abnormal viscosity of mucus secretions, persistent pathogen infections, hyperinflammation, and lung tissue damage compose the classical pathological manifestation referred to as CF lung disease. Among the multifunctional defects associated with defective CFTR, increasing evidence supports the relevant role of perturbed calcium (Ca2+) signaling in the pathophysiology of CF lung disease. The Ca2+ ion is a critical player in cell functioning and survival. Its intracellular homeostasis is maintained by a fine balance between channels, transporters, and exchangers, mediating the influx and efflux of the ion across the plasma membrane and the intracellular organelles. An abnormal Ca2+ profile has been observed in CF cells, including airway epithelial and immune cells, with heavy repercussions on cell function, viability, and susceptibility to pathogens, contributing to proinflammatory overstimulation, organelle dysfunction, oxidative stress, and excessive cytokines release in CF lung. This review discusses the role of Ca2+ signaling in CF and how its dysregulation in airway epithelial and immune cells contributes to hyperinflammation in the CF lung. Finally, we provide an outlook on the therapeutic options that target the Ca2+ signaling to treat the CF lung disease.Background Colorectal cancer (CRC) is the third most common cancer in Europe, with an annual increase in incidence ranging between 0.4 and 3.6% in various countries. Although the development of CRC was extensively studied, limited number of new therapies were developed in the last few years. Bevacizumab is frequently used as first- and second-line therapy for management of metastatic CRC (mCRC). The aim of this study is to present our experience with using bevacizumab beyond disease progression at different dosage levels in mCRC patients, in terms of overall survival, progression-free survival, time to treatment failure, and toxicities. Methods We performed a consecutive retrospective analysis of patients with confirmed mCRC who were treated with bevacizumab at "Prof Dr. Ion Chiricuta" Institute of Oncology, Cluj-Napoca, Romania. We included patients who had received bevacizumab as first- or second-line therapy and further stratified them according to the dose administered as a second-line (either standard doh oxaliplatin- and irinotecan-based regimens were found to be suitable partners for BYP. Statistical analysis revealed that dose intensity, primary tumor location, and cumulative exposure to BYP had significant influence on survival. Conclusion Doubling the dose of bevacizumab after first progression may improve survival in mCRC patients. Increasing bevacizumab dose intensity could override the prognostic impact of primary tumor location in patients receiving double the dose of bevacizumab after first disease progression.Amid the establishment and optimization of Connectivity Map (CMAP), the functional relationships among drugs, genes, and diseases are further explored. This biological database has been widely used to identify drugs with common mechanisms, repurpose existing drugs, discover the molecular mechanisms of unknown drugs, and find potential drugs for some diseases. Research on traditional Chinese medicine (TCM) has entered a new era in the wake of the development of bioinformatics and other subjects including network pharmacology, proteomics, metabolomics, herbgenomics, and so on. TCM gradually conforms to modern science, but there is still a torrent of limitations. In recent years, CMAP has shown its distinct advantages in the study of the components of TCM and the synergetic mechanism of TCM formulas; hence, the combination of them is inevitable.Hasankeyf is an ancient city, dating back to more than 10,000 years, in the Southeast Anatolia Region of Turkey. The area is separated by the Tigris River on both sides and located in the Batman province. However, as a result of a dam project, in February 2020, this ancient city and some of its surrounding villages were totally flooded. The residents were moved to new settlements. This study aimed to prevent the possible loss of ethnomedicinal knowledge of plants due to migration as well as to pass on this knowledge to the future generations. The field studies were conducted between March 2017 and November 2019 in the city center and 22 rural settlements of Hasankeyf. Also, the areas where intensive migration was experienced were visited frequently. Interviews were conducted with a total of 131 participants (76 women and 55 men) while gathering plants with them. Information was collected through interviews and questionnaires. The results were analyzed by quantitative indices of information consensus factor (FIC) and use value (UV). A total of 94 plant taxa belonging to 40 families were identified in the study area. The most common medicinal plant families are Lamiaceae (13), Asteraceae (8), Rosaceae (6), Malvaceae (6), Amaryllidaceae (5), Brassicaceae (4), and Solanaceae (4). The most common preparations were infusion, fresh application, and crushing. The taxa having the highest count of use value (UV) were Teucrium polium, Matricaria aurea, Urtica dioica, Mentha longifolia, and Quercus brantii. Besides, the recorded ailments were grouped into categories based on information provided by the interviewees. The most important use categories among the informants were diabetes, gastrointestinal disorders, respiratory disorders, and dermatological disorders. The present study represents the first medical-ethnobotanical documentation and analysis of the traditional use of medicinal plants in Hasankeyf.Type I interferon (IFN-I) plays a critical role in the antiviral immune response. However, viruses have developed different strategies to suppress the production of IFN-I for its own escape and amplification. Therefore, promoting the production of IFN-I is an effective strategy against virus infection. Gastrodin (GTD), a phenolic glucoside extracted from Gastrodia elata Blume, has been reported to play a protective role in some central nervous system -related diseases and is beneficial for the recovery of diseases by inhibiting inflammation. However, the effect of GTD on virus infection is largely unknown. selleckchem Here we found GTD treatment increased the survival rate of mice infected with vesicular stomatitis virus (VSV) or herpes simplex virus-1 (HSV-1). The production of IFN-I was increased in GTD-treated mice or macrophages compared to the control group, during virus infection. Furthermore, the activation of interferon regulatory factor 3 (IRF3) was promoted by GTD in macrophages upon VSV and HSV-1 infection. Our results demonstrated that GTD could inhibit the VSV and HSV-1 infection by promoting the production of IFN-I in macrophages and might provide an effective strategy against virus infection.The genus Ferula is the third largest and a well-known genus of the Apiaceae family. It is categorized in the Peucedaneae tribe and Ferulinae subtribe of the Apiaceae family. At present, about 180 Ferula species have been reported. The genus is mainly distributed throughout central and South-West Asia (especially Iran and Afghanistan), the far-East, North India, and the Mediterranean. The genus Ferula is characterized by the presence of oleo-gum-resins (asafoetida, sagapenum, galbanum, and ammoniacum) and their use in natural and conventional pharmaceuticals. The main phytochemicals present in the genus Ferula are as follows coumarin, coumarin esters, sesquiterpenes, sesquiterpene lactones, monoterpene, monoterpene coumarins, prenylated coumarins, sulfur-containing compounds, phytoestrogen, flavonoids and carbohydrates. This genus is considered to be a valuable group of medicinal plants due to its many different biological and pharmacological uses as volatile oils (essential oils). Numerous biological activities are shown by the chemical components of the essential oils obtained from different Ferula species.