Lausenhoneycutt8375

Z Iurium Wiki

Plant pathogens and their hosts often coexist with mammal grazers. However, the direction and strength of grazing effects on foliar fungal diseases can be idiosyncratic, varying among host plant species and pathogen types. We combined a 6 yr yak-grazing experiment, a clipping experiment simulating different mammal consumption patterns (leaf damage vs whole-leaf removal), and a meta-analysis of 63 comparisons to evaluate how grazing impacts foliar fungal diseases across plant growth types (grass vs forb) and pathogen life histories (biotroph vs necrotroph). In the yak-grazing experiment, grazing had no significant effect on disease severity, and grasses experienced a higher disease severity than forbs; there was a significant interaction between pathogen type and grazing. In both the yak-grazing experiment and meta-analysis, grazing decreased biotrophic pathogens (mainly rusts and powdery mildew), but did not affect necrotrophic pathogens (mainly leaf spots). The clipping experiment suggested that grazers might promote infection by necrotrophic pathogens by producing wounds on leaves, but inhibit biotrophic pathogens via leaf removal. In conclusion, our three-part approach revealed that intrinsic properties of both plants and pathogens shape patterns of disease in natural ecosystems, greatly improving our ability to predict disease severity under mammal grazing.With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a need for diagnostic tests has surfaced. Point-of-care (POC) antibody tests can detect immunoglobulin (Ig) G and M against SARS-CoV-2 in serum, plasma, or whole blood and give results within 15 min. Validation of the performance of such tests is needed if they are to be used in clinical practice. In this study, we evaluated three POC antibody tests. Convalescent serum samples from 47 reverse transcription-polymerase chain reaction (RT-PCR) verified patients with coronavirus disease 2019 (COVID-19) collected at least 28 days post RT-PCR diagnosis as well as 50 negative pre-COVID-19 controls were tested. The three tests (denoted the J-, N-, and Z-tests) displayed the sensitivities of 87%, 96%, and 85%, respectively, for the detection of IgG. All tests had the same specificity for IgG (98%). The tests did not differ significantly for the detection of IgG. The sensitivities for IgM were lower (15%, 67%, and 70%) and the specificities were 90%, 98%, and 90%, respectively. The positive and negative predictive values were similar among the tests. SR-717 datasheet Our results indicate that these POC antibody tests might be accurate enough to use in routine clinical practice.In industrial large-scale bioreactors, microorganisms encounter heterogeneous substrate concentration conditions, which can impact growth or product formation. Here we carried out an extended (12 h) experiment of repeated glucose pulsing with a 10-min period to simulate fluctuating glucose concentrations with Aspergillus niger producing glucoamylase, and investigated its dynamic response by rapid sampling and quantitative metabolomics. The 10-min period represents worst-case conditions, as in industrial bioreactors the average cycling duration is usually in the order of 1 min. We found that cell growth and the glucoamylase productivity were not significantly affected, despite striking metabolomic dynamics. Periodical dynamic responses were found across all central carbon metabolism pathways, with different time scales, and the frequently reported ATP paradox was confirmed for this A. niger strain under the dynamic conditions. A thermodynamics analysis revealed that several reactions of the central carbon metabolism remained in equilibrium even under periodical dynamic conditions. The dynamic response profiles of the intracellular metabolites did not change during the pulse exposure, showing no significant adaptation of the strain to the more than 60 perturbation cycles applied. The apparent high tolerance of the glucoamylase producing A. niger strain for extreme variations in the glucose availability presents valuable information for the design of robust industrial microbial hosts.Arabidopsis histone H3 lysine 4 (H3K4) demethylases play crucial roles in several developmental processes, but their involvement in seedling establishment remain unexplored. Here, we show that Arabidopsis JUMONJI DOMAIN-CONTAINING PROTEIN17 (JMJ17), an H3K4me3 demethylase, is involved in cotyledon greening during seedling establishment. Dark-grown seedlings of jmj17 accumulated a high concentration of protochlorophyllide, an intermediate metabolite in the tetrapyrrole biosynthesis (TPB) pathway that generates chlorophyll (Chl) during photomorphogenesis. Upon light irradiation, jmj17 mutants displayed decreased cotyledon greening and reduced Chl level compared with the wild-type; overexpression of JMJ17 completely rescued the jmj17-5 phenotype. Transcriptomics analysis uncovered that several genes encoding key enzymes involved in TPB were upregulated in etiolated jmj17 seedlings. Consistently, chromatin immunoprecipitation-quantitative PCR revealed elevated H3K4me3 level at the promoters of target genes. Chromatin association of JMJ17 was diminished upon light exposure. Furthermore, JMJ17 interacted with PHYTOCHROME INTERACTING FACTOR1 in the yeast two-hybrid assay. JMJ17 binds directly to gene promoters to demethylate H3K4me3 to suppress PROTOCHLOROPHYLLIDE OXIDOREDUCTASE C expression and TPB in the dark. Light results in de-repression of gene expression to modulate seedling greening during de-etiolation. Our study reveals a new role for histone demethylase JMJ17 in controlling cotyledon greening in etiolated seedlings during the dark-to-light transition.The farmland of the world's main corn-producing area is increasingly affected by salt stress. Therefore, the breeding of salt-tolerant cultivars is necessary for the long-term sustainability of global corn production. link2 Previous studies have shown that natural maize varieties display a large diversity of salt tolerance, yet the genetic variants underlying such diversity remain poorly discovered and applied, especially those mediating the tolerance to salt-induced osmotic stress (SIOS). Here we report a metabolomics-driven understanding and genetic improvement of maize SIOS tolerance. Using a LC-MS-based untargeted metabolomics approach, we profiled the metabolomes of 266 maize inbred lines under control and salt conditions, and then identified 37 metabolite biomarkers of SIOS tolerance (METO1-37). Follow-up metabolic GWAS (mGWAS) and genotype-to-phenotype modeling identified 10 candidate genes significantly associating with the SIOS tolerance and METO abundances. Furthermore, we validated that a citrate synthase, a glucosyltransferase and a cytochrome P450 underlie the genotype-METO-SIOS tolerance associations, and showed that their favorable alleles additively improve the SIOS tolerance of elite maize inbred lines. Our study provides a novel insight into the natural variation of maize SIOS tolerance, which boosts the genetic improvement of maize salt tolerance, and demonstrates a metabolomics-based approach for mining crop genes associated with this complex agronomic trait.Process analytical technology (PAT) is a fast-growing field within bioprocessing that enables innovation in biological drug manufacturing. This study demonstrates novel PAT methods for monitoring multiple quality attributes simultaneously during the ultrafiltration and diafiltration (UF/DF) process operation, the final step of monoclonal antibody (mAb) purification. Size exclusion chromatography (SEC) methods were developed to measure excipients arginine, histidine, and high molecular weight (HMW) species using a liquid chromatography (LC) system with autosampler for both on-line and at-line PAT modes. The methods were applied in UF/DF studies for the comparison of single-use tangential flow filtration (TFF) cassettes to standard reusable cassettes to achieve very high concentration mAb drug substance (DS) in the order of 100-200 g/L. These case studies demonstrated that single-use TFF cassettes are a functionally equivalent, low-cost alternative to standard reusable cassettes, and that the on-line PAT measurement of purity and excipient concentration was comparable to orthogonal offline methods. These PAT applications using an on-line LC system equipped with onboard sample dilution can become a platform system for monitoring of multiple attributes over a wide dynamic range, a potentially valuable tool for biological drug development and manufacturing.Animal choruses, such as those found in insects and frogs, are often intermittent. Thus, females sampling males in the chorus might have to remember the location of the potential mates' calls during periods of silence. Although a number of studies have shown that frogs use and prefer multimodal mating signals, usually acoustic plus visual, it is not clear why they do so. Here we tested the hypothesis that preference for multimodal signals over unimodal signals might be due to multimodal signals instantiating longer memories than unimodal signals, particularly during the inter-chorus intervals. We tested this hypothesis in serrate-legged small treefrogs Kurixalus odontotarsus whose males produce advertisement calls accompanied by conspicuous vocal sac inflation. Females were tested with acoustic and acoustic + visual (video of inflating-deflating vocal sac) mating calls. We found that females prefer multimodal calls over unimodal, audio-only calls. link3 Furthermore, multimodal calls are still preferred after a silent period of up to 30 s, a time that spans the average silent period of the chorus. This was not true of unimodal calls. Our results demonstrate that a multimodal signal can engage longer working memory than a unimodal signal, and thus female memory might favour the evolution of multimodal signals in males through sexual selection. Selection might also favour female preference for multimodal signals if longer memory facilitates mate searching and assessment. Our study does not allow us to elucidate the sequence of evolution of this trait and preference.Microbial storage compounds, such as wax esters (WE), are potential high-value lipids for the production of specialty chemicals and medicines. Their synthesis, however, is strictly regulated and competes with cell growth, which leads to trade-offs between biomass and product formation. Here, we use metabolic engineering and synergistic substrate cofeeding to partition the metabolism of Acinetobacter baylyi ADP1 into two distinct modules, each dedicated to cell growth and WE biosynthesis, respectively. We first blocked the glyoxylate shunt and upregulated the WE synthesis pathway to direct the acetate substrate exclusively for WE synthesis, then we controlled the supply of gluconate so it could be used exclusively for cell growth and maintenance. We show that the two modules are functionally independent from each other, allowing efficient lipid accumulation while maintaining active cell growth. Our strategy resulted in 7.2- and 4.2-fold improvements in WE content and productivity, respectively, and the product titer was enhanced by 8.3-fold over the wild type strain. Notably, during a 24-h cultivation, a yield of 18% C-WE/C-total-substrates was achieved, being the highest reported for WE biosynthesis. This study provides a simple, yet powerful, means of controlling cellular operations and overcoming some of the fundamental challenges in microbial storage lipid production.

Autoři článku: Lausenhoneycutt8375 (Woodward Bishop)