Lauritsenwall6609

Z Iurium Wiki

Segregation of rare earth alloying elements are known to segregate to grain boundaries in Mg and suppress grain boundary sliding via strong chemical bonds. Segregation of Mn, however, has recently been found to enhance grain boundary sliding in Mg, thereby boosting its ductility. Taking the Mg (2¯114) twin boundary as an example, we performed a first-principles comparative study on the segregation and chemical bonding of Y, Zn, and Mn at this boundary. We found that both Y-4d and Mn-3d states hybridized with the Mg-3sp states, while Zn-Mg bonding was characterized by charge transfer only. Strong spin-polarization of Mn pushed the up-spin 3d states down, leading to less anisotropic Mn-Mg bonds with more delocalized charge distribution at the twin boundary, and thus promotes grain boundary plasticity, e.g., grain boundary sliding.A sealing grease plays a crucial role in the sealing of shield tails. Its pumpability and pressure sealing resistant sealing performance are greatly affected by the fiber content. In this study, discrete element method models were used to simulate the pressure-resistant tests of sealing grease in order to investigate the influence of viscosity grade and fiber's aspect ratio on the optimum fiber content of sealing grease. Meanwhile, the rationality of the optimum fiber number determined based on the sealing performance was verified with the unbalanced force and fiber area proportion obtained in the simulation, of which the variation curves with the increasing fiber number were practically identical. The simulation results elucidated that the viscosity of grease had little effect on the optimum fiber content for sealing grease. However, the increase in viscosity can improve the sealing effect, and increasing the fiber's aspect ratio can reduce the fiber number to reach a specific seal state. Based on the analysis of the total number of fiber spheres for the models with different fiber's respect ratios, it can be concluded that the sealing grease sample made of the same fiber material and quality can reach the same seal state and seal effect, independent on fiber's aspect ratio.The Smith-Watson-Topper parameter (SWT) in its original form was designed to estimate the fatigue life of metal materials in a uniaxial load state (tension-compression) in the range up to fatigue crack initiation, with non-zero mean values. This parameter is based on the analysis of both stress and strain. Therefore, the stress-strain criterion is the focus, rather than the energy criterion. This paper presents the original SWT model and its numerous modifications. The first part presents different versions of this parameter defined by the normal parameters. learn more Then, it presents versions defined through the tangent parameter and the most promising parameter defined through the tangent and normal parameters. It was noted that the final form of the equivalent value is defined either by stress or by an energy parameter. Therefore, the possible characteristics from which the fatigue life can be determined are also presented.Permanent deformation is one of the dominant asphalt concrete damages. Significant progress has been made to realistically predict the damage. In the last decade, the mechanistic approach has been the focus of research, and the fundamental theories of viscoelasticity, viscoplasticity, continuum mechanics, and micromechanics are applied to develop the material laws (constitutive equations). This paper reviews the advancement of permanent deformation models including analogical, microstructural, and continuum-based methods. Pavement analysis using the nonlinear damage approach (PANDA) is the most comprehensive and theoretically sound approach that is available in the literature. The model coupled different damages and other phenomena (such as cracking, moisture, and phenomena such as healing, aging, etc.). The anisotropic microstructure approach can be incorporated into the PANDA approach for a more realistic prediction. Moreover, the interaction of fatigue and permanent deformation is the gap that is lacking in the literature. The mechanistic approaches have the capacity to couple these damages for unified asphalt concrete damage prediction.This work is a first approach to investigate the role of spatial dispersion in photonic hypercrystals (PHCs). The scope of the presented analysis is focused on exploiting nonlocality, which can be controlled by appropriate design of the structure, to obtain new light generation effects in a distributed feedback (DFB) laser based on PHC, which are not observable under weak spatial dispersion. Here, we use effective medium approximation and our original model of threshold laser generation based on anisotropic transfer matrix method. To unequivocally identify nonlocal generation phenomena, the scope of our analysis includes comparison between local and nonlocal threshold generation spectra, which may be obtained for different geometries of PHC structure. In particular, we have presented that, in the presence of strong spatial dispersion, it is possible to obtain spectrally shifted Bragg wavelengths of TE- and TM-polarization spectra, lowered generation threshold levels for both light polarizations, generation of light of selected light polarization (TE or TM), or simultaneous generation of TE- and TM-polarized waves at different frequencies with controllable spectral separation, instead of single mode operation anticipated with local approach.The majority of recent studies have focused on obtaining MRI materials for internal use. However, this study focuses on a straightforward method for preparing gelatin-based materials with iron oxide nanoparticles (G-Fe2O3 and G-Fe3O4) for external use. The newly obtained materials must be precisely tuned to match the requirements and usage situation because they will be in close touch with human/animal skin. The biocompatible structures formed by gelatin, tannic acid, and iron oxide nanoparticles were investigated by using FTIR spectroscopy, SEM-EDAX analysis, and contact angle methods. The physico-chemical properties were obtained by using mechanical investigations, dynamic vapor sorption analysis, and bulk magnetic determination. The size and shape of iron oxide nanoparticles dictates the magnetic behavior of the gelatin-based samples. The magnetization curves revealed a typical S-shaped superparamagnetic behavior which is evidence of improved MRI image accuracy. In addition, the MTT assay was used to demonstrate the non-toxicity of the samples, and the antibacterial test confirmed satisfactory findings for all G-based materials.The application of granulated copper slag (GCS) to partially replace cement is limited due to its low pozzolanic activity. In this paper, reconstituted granulated copper slag (RGCS) was obtained by adding alumina oxide (Al2O3) to liquid copper slag. Blended cement pastes were formulated by a partial substitute for ordinary Portland cement (OPC) with the RGCS (30 wt%). The pozzolanic activity, mechanical development, and the microstructure were characterized. The results show that 5-10 wt% Al2O3 contributes to the increase in magnetite precipitation in RGCS. The addition of Al2O3 alleviates the inhibition of C3S by RGCS and accelerates the dissociation of RGCS active molecules, thus increasing the exothermic rate and cumulative heat release of the blended cement pastes, which are the highest in the CSA10 paste with the highest Al2O3 content (10 wt%) in RGCS. The unconfined compressive strength (UCS) values of blended cement mortar with 10 wt% Al2O3 added to RGCS reach 27.3, 47.4, and 51.3 MPa after curing for 7, 28 and 90 d, respectively, which are the highest than other blended cement mortars, and even exceed that of OPC mortar at 90 d of curing. The pozzolanic activity of RGCS is enhanced with the increase in Al2O3 addition, as evidenced by more portlandite being consumed in the CSA10 paste, forming more C-S-H (II) gel with a higher Ca/Si ratio, and a more compact microstructure with fewer pores than other pastes. This work provided a novel, feasible, and clean way to enhance the pozzolanic activity of GCS when it was used as a supplementary cementitious material.Fused silica is a ceramic with promising applications as a filler in composites due to its near-zero thermal expansion. Substitution of heavy cast iron with Al-based light alloys is of utmost importance for the automotive industry. However, the high thermal expansion of Al alloys is an obstacle to their use in some applications. As such, ceramic fillers are natural candidates for tuning thermal expansion of Al-based matrices, due to their inherently moderate or low thermal expansion. Alumix-231 is a new promising alloy, and fused silica has never been used before to lower its thermal expansion. Composites with the addition of 5 to 20 vol.% of fused silica were developed through powder metallurgy, and the best results in terms of reduction of thermal expansion were reached after liquid phase sintering at 565 °C. Coefficients of thermal expansion as low as 13.70 and 12.73 × 10-6 °C-1 (between 25 and 400 °C) were reached for the addition of 15 and 20 vol.% of fused silica, a reduction of 29.9% and 34.8%, respectively, in comparison to neat Alumix-231. In addition, the density and hardness of these composites were not significantly affected, since they suffered only a small decrease, no higher than 6% and 5%, respectively. As such, the obtained results showed that Alumix-231/fused silica composites are promising materials for automotive applications.This paper reports on the manufacturing of complex three-dimensional Si/C structures via a chemical vapor deposition method. The structure and properties of the grown materials were characterized using various techniques including scanning electron microscopy, aberration-corrected transmission electron microscopy, confocal Raman spectroscopy, and X-ray photoelectron spectroscopy. The spectroscopy results revealed that the grown materials were composed of micro/nanostructures with various compositions and dimensions. These included two-dimensional silicon carbide (SiC), cubic silicon, and various SiC polytypes. The coexistence of these phases at the nano-level and their interfaces can benefit several Si/C-based applications ranging from ceramics and structural applications to power electronics, aerospace, and high-temperature applications. With an average density of 7 mg/cm3, the grown materials can be considered ultralightweight, as they are three orders of magnitude lighter than bulk Si/C materials. This study aims to impact how ceramic materials are manufactured, which may lead to the design of new carbide materials or Si/C-based lightweight structures with additional functionalities and desired properties.The main measure to reduce energy losses is the usage of insulating materials. When the temperature exceeds 500 °C, silicate and ceramic products are most commonly used. In this work, high-crystallinity 1.13 nm tobermorite and xonotlite were hydrothermally synthesized from lime and Ca-Si sedimentary rock, opoka. By XRD, DSC, TG and dilatometry methods, it has been shown that 1.13 nm tobermorite becomes the predominant compound in stirred suspensions at 200 °C after 4 h of synthesis in the mixture with a molar ratio CaO/SiO2 = 0.83. It is suitable for the production of insulating products with good physical-mechanical properties (average density < 200 kg·m-1, compressive strength ~0.9 MPa) but has a limited operating temperature (up to 700 °C). Sufficiently pure xonotlite should be used to obtain materials with a higher operating temperature. Even small amounts of semi-amorphous C-S-H(I) significantly increase its linear shrinkage during firing. It has also been observed that an increase in the strength values of the samples correlated well with the increase in the size of xonotlite crystallites.

Autoři článku: Lauritsenwall6609 (Flowers Brantley)