Lauritsenbruun1707

Z Iurium Wiki

However, still a strong variance in subjective ratings was observed, making further research necessary.

To reveal the sonographic characteristics of various foreign bodies and dental materials to aid diagnosis.

24 objects consisting of various dental materials and foreign bodies were included in the study. Objects were embedded in bovine gelatin. Images of the objects were obtained by conventional radiography and ultrasonography (USG). Opacities were evaluated by conventional radiography. Their visibility and posterior acoustic behaviors were examined by USG. In addition, the actual sizes of the objects and their dimensions measured by USG were compared.

All objects included in the study, including non-opaque ones, could be visualized by USG. When the posterior acoustic behavior of objects was examined, 15 of the objects (62.5%) caused posterior acoustic shadowing on USG. While 6 of the objects (25%) did not have any USG artifacts, 2 of them (8,3%) had comet tail artifact and 1 of them (4,2%) had reverberation artifact. There was no statistically significant difference between the actual dimensions of the objects and their dimensions measured by USG (

> 0,05).

USG is a very useful technique for imaging foreign bodies and dental materials, it can even show objects that cannot be seen in X-rays on

environment.

USG is a very useful technique for imaging foreign bodies and dental materials, it can even show objects that cannot be seen in X-rays on in-vitro environment.In this study we investigated whether bacterial community composition in full-scale wastewater treatment bioreactors can be better explained by niche- or neutral- based theory (deterministic or stochastic) and whether bioreactor design (continuous-flow vs. fill-and-draw) affected community assembly. Four wastewater treatment facilities (one with quadruplicated continuous-flow bioreactors, two with one continuous-flow bioreactor each, one with triplicated fill-and-draw bioreactors) were investigated. Bioreactor community composition was characterized by sequencing of PCR-amplified 16S rRNA gene fragments. Replicate bioreactors at the same wastewater treatment facility had largely reproducible (i.e., deterministic) bacterial community composition, although bacterial community composition in continuous-flow bioreactors was significantly more reproducible (P less then 0.001) than in fill-and-draw bioreactors (Bray-Curtis dissimilarity μ = 0.48 ± 0.06 vs. 0.58 ± 0.08). Next, we compared our results to previouslyhallenges of microbial ecology. In environmental systems, this challenge is exacerbated because "replicate" experiments are typically impossible; that is, microbial ecologists cannot fabricate multiple field-scale experiments of identical, natural ecosystems. Our results directly demonstrate that deterministic mechanisms are more prominent than stochastic mechanisms in the assembly of wastewater treatment bioreactor communities. Our results also suggest that wastewater treatment bioreactor design is pertinent, such that the imposition of feast-famine conditions (i.e., fill-and-draw bioreactors) nudge bacterial community assembly more towards stochastic mechanisms compared to the imposition of stringent nutrient limitation (i.e., continuous-flow bioreactors). Our research also validates the previously-used indirect methods (synchronous community dynamics and an application of a null-model) for characterizing the relative importance of deterministic versus stochastic mechanisms of community assembly.Multidrug resistant (MDR) Escherichia coli strains that carry extended-spectrum β-lactamases (ESBLs) or colistin resistance gene mcr-1 have been identified in the human gut at an increasing incidence worldwide. In this study, we isolated and characterized MDR Enterobacteriaceae from the gut microbiota of healthy Singaporeans and show that the detection rates for ESBL-producing and mcr-positive Enterobacteriaceae are 25.7% (28/109) and 7.3% (8/109), respectively. Whole-genome sequencing analysis of the 37 E. coli isolates assigned them into 25 sequence types and six different phylogroups, suggesting that the MDR E. coli gut colonizers are highly diverse. We then analysed the genetic context of the resistance genes and found that composite transposons played important roles in the co-transfer of blaCTX-M-15/55 and qnrS1, as well as the acquisition of mcr-1. Furthermore, comparative genomic analysis showed that 12 of the 37 MDR E. coli isolates showed high similarity to ESBL-producing E. coli isolates from raw m markets, we detected a MDR E. coli clone that was possibly transmitted between humans and raw meat products. Furthermore, we also found that a group of resistance plasmids might be responsible for the dissemination of colistin resistance gene mcr-1 in Singapore, Malaysia and Europe. Our findings call for better countermeasures to block the transmission of antibiotic resistance.Cholera disease is caused by Vibrio cholerae infecting the lining of the small intestine and results in severe diarrhea. V. cholerae's swimming motility is known to play a crucial role in pathogenicity and may aid the bacteria in crossing the intestinal mucus barrier to reach sites of infection, but the exact mechanisms are unknown. The cell can be either pushed or pulled by its single polar flagellum, but there is no consensus on the resulting repertoire of motility behaviors. We use high-throughput 3D bacterial tracking to observe V. cholerae swimming in buffer, in viscous solutions of the synthetic polymer PVP, and in mucin solutions that may mimic the host environment. We perform a statistical characterization of its motility behavior on the basis of large 3D trajectory datasets. We find that V. cholerae performs asymmetric run-reverse-flick motility, consisting of a sequence of a forward run, reversal, and a shorter backward run, followed by a turn by approximately 90°, called a flick, preceding the nextolerae swims in environments that mimic properties of the host environment may advance the understanding of how motility contributes to infection.Acidithiobacillus ferrooxidans are well-studied iron- and sulfur-oxidizing acidophilic chemolithoautotrophs that are exploited for their ability to participate in the bioleaching of metal sulfides. Here, we overexpressed the endogenous glutamate-cysteine ligase and glutathione synthetase genes in separate strains and found that glutathione synthetase overexpression increased intracellular glutathione levels. We explored the impact of pH on the halotolerance of iron oxidation in wild type and engineered cultures. The increase in glutathione allowed the modified cells to grow under salt concentrations and pH conditions that are fully inhibitory to wild type cells. Furthermore, we found that improved iron oxidation ability in the presence of chloride also resulted in higher levels of intracellular ROS in the strain. These results indicate that glutathione overexpression can be used to increase halotolerance in A. ferrooxidans and would likely be a useful strategy on other acidophilic bacteria. Importance The use of acidophilic bacteria in the hydrometallurgical processing of sulfide ores can enable many benefits including the potential reduction of environmental impacts. The cells involved in bioleaching tend to have limited halotolerance, and increased halotolerance could enable several benefits, including a reduction in the need for the use of fresh water resources. We show that the genetic modification of A. ferrooxidans for the overproduction of glutathione is a promising strategy to enable cells to resist the oxidative stress that can occur during growth in the presence of salt.Pediococcus acidilactici is commonly used for pediocin production and lactic acid fermentation. However, high-efficiency genome editing tool is unavailable for this species. In this study, we constructed the endogenous subtype II-A CRISPR-Cas system-based genome interference plasmids which carried a "Repeat-Spacer-Repeat" cassette in the pMG36e shuttle vector. These plasmids exhibited self-interference activities in P. acidilactici LA412. Then, the genome-editing plasmids were constructed by cloning the upstream/downstream donor DNA into the corresponding interference plasmids to exert high-efficiency markerless gene deletion, gene integration, and point mutation in P. acidilactici LA412. We found that endogenous CRISPR-mediated depletion of the native plasmids enhanced the cell growth, and integration of a L-lactate dehydrogenase gene into the chromosome both enhanced cell growth and lactic acid production. IMPORTANCE A rapid and precise genome editing tool will promote the practical application of Pediococcus acidilactici, one type of lactic acid bacteria with excellent stress tolerance and probiotic characteristics. This study established a high-efficiency endogenous CRISPR-Cas system-based genome editing tool for P. acidilactici and achieved different genetic manipulations, including gene deletion, gene insertion, mononucleotide mutation, and endogenous plasmid depletion. The engineered strain edited by this tool showed significant advantages in cell growth and lactic acid fermentation. Therefore, our tool can satisfy the requirements for genetic manipulations of P. acidilactici, thus making it a sophisticated chassis species for synthetic biology and bioindustry.β-Hydroxy-α-amino acids are useful compounds for pharmaceutical development. Enzymatic synthesis of β-hydroxy-α-amino acids has attracted considerable interest as a selective, sustainable, and environmentally benign process. In this study, we identified a novel amino acid hydroxylase, AEP14369, from Sulfobacillus thermotolerans Y0017, which is included in a previously constructed CAS-like superfamily protein library, to widen the variety of amino acid hydroxylases. The detailed structures determined by nuclear magnetic resonance and X-ray crystallography analysis of the enzymatically produced compounds revealed that AEP14369 catalyzed threo-β-selective hydroxylation of l-His and l-Gln in a 2-oxoglutarate-dependent manner. Furthermore, the production of l-threo-β-hydroxy-His and l-threo-β-hydroxy-Gln was achieved using Escherichia coli expressing the gene encoding AEP14369 as a whole-cell biocatalyst. Under optimized reaction conditions, 137 mM (23.4 g L-1) l-threo-β-hydroxy-His and 150 mM l-threo-β-hydroxy-Glbiotechnologically synthesized both l-threo-β-hydroxy-His and l-threo-β-hydroxy-Gln with a titer of over 20 g L-1 through whole-cell bioconversion using recombinant Escherichia coli cells. As β-hydroxy-α-amino acids are important compounds for pharmaceutical development, this achievement would facilitate future sustainable and economical industrial applications.The ability of some metal-reducing bacteria to produce a rough (no O-antigen) lipopolysaccharide (LPS) could facilitate surface interactions with minerals and metal reduction. Consistent with this, the laboratory model metal reducer Geobacter sulfurreducens PCA produced two rough LPS isoforms (with or without a terminal methyl-quinovosamine sugar) when growing with the soluble electron acceptor, fumarate, but only expressed the shorter and more hydrophilic variant when reducing iron oxides. We reconstructed from genomic data conserved pathways for the synthesis of the rough LPS and generated heptosyltransferase mutants with partial (ΔrfaQ) and complete (ΔrfaC) truncations in the core oligosaccharide. DiR chemical The stepwise removal of the LPS core sugars reduced the hydrophilicity of the cell and increased outer membrane vesiculation. These changes in outer membrane charge and remodeling did not substantially impact planktonic growth but disrupted the developmental stages and structure of electroactive biofilms. Furthermore, the mutants assembled conductive pili for the extracellular mineralization of the toxic uranyl cation, yet were unable to prevent the permeation and mineralization of the radionuclide in the cell envelope.

Autoři článku: Lauritsenbruun1707 (Gates Nguyen)