Lauridsengodwin2784

Z Iurium Wiki

Hotspot histone H3 mutations have emerged as drivers of oncogenesis in cancers of multiple lineages. Specifically, H3 lysine 36 to methionine (H3K36M) mutations are recurrently identified in chondroblastomas, undifferentiated sarcomas, and head and neck cancers. While the mutation reduces global levels of both H3K36 dimethylation (H3K36me2) and trimethylation (H3K36me3) by dominantly inhibiting their respective specific methyltransferases, the relative contribution of these methylation states to the chromatin and phenotypic changes associated with H3K36M remains unclear. Here, we specifically deplete H3K36me2 or H3K36me3 in mesenchymal cells, using CRISPR-Cas9 to separately knock out the corresponding methyltransferases NSD1/2 or SETD2. By profiling and comparing the epigenomic and transcriptomic landscapes of these cells with cells expressing the H3.3K36M oncohistone, we find that the loss of H3K36me2 could largely recapitulate H3.3K36M's effect on redistribution of H3K27 trimethylation (H3K27me3) and gene expression. Consistently, knockout of Nsd1/2, but not Setd2, phenocopies the differentiation blockade and hypersensitivity to the DNA-hypomethylating agent induced by H3K36M. Together, our results support a functional divergence between H3K36me2 and H3K36me3 and their nonredundant roles in H3K36M-driven oncogenesis.Natural aerosols in pristine regions form the baseline used to evaluate the impact of anthropogenic aerosols on climate. Sea spray aerosol (SSA) is a major component of natural aerosols. Despite its importance, the abundance of SSA is poorly constrained. It is generally accepted that wind-driven wave breaking is the principle governing SSA production. This mechanism alone, however, is insufficient to explain the variability of SSA concentration at given wind speed. The role of other parameters, such as sea surface temperature (SST), remains controversial. Here, we show that higher SST promotes SSA mass generation at a wide range of wind speed levels over the remote Pacific and Atlantic Oceans, in addition to demonstrating the wind-driven SSA production mechanism. The results are from a global scale dataset of airborne SSA measurements at 150 to 200 m above the ocean surface during the NASA Atmospheric Tomography Mission. Statistical analysis suggests that accounting for SST greatly enhances the predictability of the observed SSA concentration compared to using wind speed alone. selleckchem Our results support implementing SST into SSA source functions in global models to better understand the atmospheric burdens of SSA.Acetogenic bacteria use cellular redox energy to convert CO2 to acetate using the Wood-Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H2 as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum The hybrid system converts CO2 into acetate without the need for additional energy sources, such as H2, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO2, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO2 fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.The OLE (ornate, large, and extremophilic) RNA class is one of the most complex and well-conserved bacterial noncoding RNAs known to exist. This RNA is known to be important for bacterial responses to stress caused by short-chain alcohols, cold, and elevated Mg2+ concentrations. These biological functions have been shown to require the formation of a ribonucleoprotein (RNP) complex including at least two protein partners OLE-associated protein A (OapA) and OLE-associated protein B (OapB). OapB directly binds OLE RNA with high-affinity and specificity and is believed to assist in assembling the functional OLE RNP complex. To provide the atomic details of OapB-OLE RNA interaction and to potentially reveal previously uncharacterized protein-RNA interfaces, we determined the structure of OapB from Bacillus halodurans alone and in complex with an OLE RNA fragment at resolutions of 1.0 Å and 2.0 Å, respectively. The structure of OapB exhibits a K-shaped overall architecture wherein its conserved KOW motif and additional unique structural elements of OapB form a bipartite RNA-binding surface that docks to the P13 hairpin and P12.2 helix of OLE RNA. These high-resolution structures elucidate the molecular contacts used by OapB to form a stable RNP complex and explain the high conservation of sequences and structural features at the OapB-OLE RNA-binding interface. These findings provide insight into the role of OapB in the assembly and biological function of OLE RNP complex and can guide the exploration of additional possible OLE RNA-binding interactions present in OapB.The pathogenic consequences of 369 unique human HsMLH1 missense variants has been hampered by the lack of a detailed function in mismatch repair (MMR). Here single-molecule images show that HsMSH2-HsMSH6 provides a platform for HsMLH1-HsPMS2 to form a stable sliding clamp on mismatched DNA. The mechanics of sliding clamp progression solves a significant operational puzzle in MMR and provides explicit predictions for the distribution of clinically relevant HsMLH1 missense mutations.Central elements of the climate system are at risk for crossing critical thresholds (so-called tipping points) due to future greenhouse gas emissions, leading to an abrupt transition to a qualitatively different climate with potentially catastrophic consequences. Tipping points are often associated with bifurcations, where a previously stable system state loses stability when a system parameter is increased above a well-defined critical value. However, in some cases such transitions can occur even before a parameter threshold is crossed, given that the parameter change is fast enough. It is not known whether this is the case in high-dimensional, complex systems like a state-of-the-art climate model or the real climate system. Using a global ocean model subject to freshwater forcing, we show that a collapse of the Atlantic Meridional Overturning Circulation can indeed be induced even by small-amplitude changes in the forcing, if the rate of change is fast enough. Identifying the location of critical thresholds in climate subsystems by slowly changing system parameters has been a core focus in assessing risks of abrupt climate change.

Autoři článku: Lauridsengodwin2784 (Buckley Sherrill)