Lauridsenbritt0146

Z Iurium Wiki

s were efficiently transferred to neonates, but declined quickly to below the protective threshold, particularly among those whose mothers had low antibody titres. Our findings suggest that maternal vaccination could be explored to provide neonatal protection against EV-A71 through maternal antibodies. Catch-up vaccination between ages 6 months to 5 years could provide protection to the approximately 30-90% of children that have not had natural EV-A71 infection by that age.

National Science Fund for Distinguished Young Scholars, National Natural Science Foundation of China.

National Science Fund for Distinguished Young Scholars, National Natural Science Foundation of China.Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of African ancestry (AA) experience the disease more severely and with an increased co-morbidity burden compared to European ancestry (EA) populations. We hypothesize that the disparities in disease prevalence, activity, and response to standard medications between AA and EA populations is partially conferred by genomic influences on biological pathways. To address this, we applied a comprehensive approach to identify all genes predicted from SNP-associated risk loci detected with the Immunochip. By combining genes predicted via eQTL analysis, as well as those predicted from base-pair changes in intergenic enhancer sites, coding-region variants, and SNP-gene proximity, we were able to identify 1,731 potential ancestry-specific and trans-ancestry genetic drivers of SLE. Gene associations were linked to upstream and downstream regulators using connectivity mapping, and predicted biological pathways were mined for candidate drug targets. Examination of trans-ancestral pathways reflect the well-defined role for interferons in SLE and revealed pathways associated with tissue repair and remodeling. EA-dominant genetic drivers were more often associated with innate immune and myeloid cell function pathways, whereas AA-dominant pathways mirror clinical findings in AA subjects, suggesting disease progression is driven by aberrant B cell activity accompanied by ER stress and metabolic dysfunction. Finally, potential ancestry-specific and non-specific drug candidates were identified. The integration of all SLE SNP-predicted genes into functional pathways revealed critical molecular pathways representative of each population, underscoring the influence of ancestry on disease mechanism and also providing key insight for therapeutic selection.Variation in levels of the human metabolome reflect changes in homeostasis, providing a window into health and disease. The genetic impact on circulating metabolites in Hispanics, a population with high cardiometabolic disease burden, is largely unknown. We conducted genome-wide association analyses on 640 circulating metabolites in 3,926 Hispanic Community Health Study/Study of Latinos participants. The estimated heritability for 640 metabolites ranged between 0%-54% with a median at 2.5%. We discovered 46 variant-metabolite pairs (p value less then 1.2 × 10-10, minor allele frequency ≥ 1%, proportion of variance explained [PEV] mean = 3.4%, PEVrange = 1%-22%) with generalized effects in two population-based studies and confirmed 301 known locus-metabolite associations. Half of the identified variants with generalized effect were located in genes, including five nonsynonymous variants. We identified co-localization with the expression quantitative trait loci at 105 discovered and 151 known loci-metabolites sets. rs5855544, upstream of SLC51A, was associated with higher levels of three steroid sulfates and co-localized with expression levels of SLC51A in several tissues. Mendelian randomization (MR) analysis identified several metabolites associated with coronary heart disease (CHD) and type 2 diabetes. For example, two variants located in or near CYP4F2 (rs2108622 and rs79400241, respectively), involved in vitamin E metabolism, were associated with the levels of octadecanedioate and vitamin E metabolites (gamma-CEHC and gamma-CEHC glucuronide); MR analysis showed that genetically high levels of these metabolites were associated with lower odds of CHD. Our findings document the genetic architecture of circulating metabolites in an underrepresented Hispanic/Latino community, shedding light on disease etiology.

Physiological lung ageing is associated with a gradual decline in dynamic lung volumes and a progressive increase in residual volume due to diminished elastic recoil of the lung, loss of alveolar tissue, and lower chest wall compliance. However, the effects of ageing on the small airways (ie, airways <2·0 mm in diameter) remain largely unknown. By using a combination of ex-vivo conventional CT (resolution 1 mm), whole lung micro-CT (resolution 150 μm), and micro-CT of extracted cores (resolution 10 μm), we aimed to provide a multiresolution assessment of the small airways in lung ageing in a large cohort of never smokers.

For this cross-sectional study, we included donor lungs collected from 32 deceased never-smoking donors (age range 16-83 years). Ex-vivo CT and whole lung high-resolution CT (micro-CT) were used to determine total airway numbers, stratified by airway diameter. Gefitinib supplier Micro-CT was used to assess the number, length, and diameter of terminal bronchioles (ie, the last generation of conducting aiver, this decrease in terminal bronchioles was associated with the age-related decline of pulmonary function predicted by healthy reference values.

Loss of terminal bronchioles is an important structural component of age-related decline in pulmonary function of healthy, non-smoking individuals.

Research Foundation-Flanders, KU Leuven, Parker B Francis Foundation, UGent, Canadian Institutes for Health.

Research Foundation-Flanders, KU Leuven, Parker B Francis Foundation, UGent, Canadian Institutes for Health.The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.

Autoři článku: Lauridsenbritt0146 (Nunez Carlsen)