Larsonvittrup6268

Z Iurium Wiki

PCA components reflecting neuroinflammation and tau burden in the brainstem and cerebellum correlated with the subsequent annual rate of change in the PSPRS. PCA-derived PET markers of neuroinflammation and tau pathology correlated with regional brain volume in the same regions. However, MRI volumes alone did not predict the rate of clinical progression.

Molecular imaging with PET for microglial activation and tau pathology can predict clinical progression in PSP. These data encourage the evaluation of immunomodulatory approaches to disease-modifying therapies in PSP and the potential for PET to stratify patients in early phase clinical trials.

Molecular imaging with PET for microglial activation and tau pathology can predict clinical progression in PSP. These data encourage the evaluation of immunomodulatory approaches to disease-modifying therapies in PSP and the potential for PET to stratify patients in early phase clinical trials.There is a need for replacement heart valves that can grow with children. We fabricated tubes of fibroblast-derived collagenous matrix that have been shown to regenerate and grow as a pulmonary artery replacement in lambs and implemented a design for a valved conduit consisting of three tubes sewn together. Seven lambs were implanted with tri-tube valved conduits in sequential cohorts and compared to bioprosthetic conduits. Valves implanted into the pulmonary artery of two lambs of the first cohort of four animals functioned with mild regurgitation and systolic pressure drops less then 10 mmHg up to 52 weeks after implantation, during which the valve diameter increased from 19 mm to a physiologically normal ~25 mm. In a second cohort, the valve design was modified to include an additional tube, creating a sleeve around the tri-tube valve to counteract faster root growth relative to the leaflets. Two valves exhibited trivial-to-mild regurgitation at 52 weeks with similar diameter increases to ~25 mm and systolic pressure drops of less then 5 mmHg, whereas the third valve showed similar findings until moderate regurgitation was observed at 52 weeks, correlating to hyperincrease in the valve diameter. In all explanted valves, the leaflets contained interstitial cells and an endothelium progressing from the base of the leaflets and remained thin and pliable with sparse, punctate microcalcifications. The tri-tube valves demonstrated reduced calcification and improved hemodynamic function compared to clinically used pediatric bioprosthetic valves tested in the same model. This tri-tube valved conduit has potential for long-term valve growth in children.A disintegrin and metalloprotease 10 (ADAM10) is the α-secretase for amyloid precursor protein (APP). ADAM10 cleaves APP to generate neuroprotective soluble APPα (sAPPα), which precludes the generation of Aβ, a defining feature of Alzheimer's disease (AD) pathophysiology. Reduced ADAM10 activity is implicated in AD, but the mechanisms mediating ADAM10 modulation are unclear. We find that the plasma membrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2) stimulates ADAM10 APP cleavage by shedding and inactivating reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a glycosylphosphatidylinositol (GPI)-anchored inhibitor of ADAM10. In AD, membrane-tethered RECK is highly elevated and GDE2 is abnormally sequestered inside neurons. Genetic ablation of GDE2 phenocopies increased membrane RECK in AD, which is causal for reduced sAPPα, increased Aβ, and synaptic protein loss. RECK reduction restores the balance of APP processing and rescues synaptic protein deficits. These studies identify GDE2 control of RECK surface activity as essential for ADAM10 α-secretase function and physiological APP processing. Moreover, our results suggest the involvement of the GDE2-RECK-ADAM10 pathway in AD pathophysiology and highlight RECK as a potential target for therapeutic development.Current treatment options for foot ulcers, a serious and prevalent complication of diabetes, remain nonspecific. In this Perspective, we present recent advances in understanding the pathophysiology of diabetic wound healing and the emergence of previously unidentified targets. We discuss wound dressings tailored to the diabetic wound environment currently under development.Protection from immunodeficiency virus challenge in nonhuman primates (NHPs) by a first-generation HIV broadly neutralizing antibody (bnAb) b12 has previously been shown to benefit from interaction between the bnAb and Fcγ receptors (FcγRs) on immune cells. To investigate the mechanism of protection for a more potent second-generation bnAb currently in clinical trials, PGT121, we carried out a series of NHP studies. These studies included treating with PGT121 at a concentration at which only half of the animals were protected to avoid potential masking of FcγR effector function benefits by dominant neutralization and using a new variant that more completely eliminated all rhesus FcγR binding than earlier variants. In contrast to b12, which required FcγR binding for optimal protection, we concluded that PGT121-mediated protection is not augmented by FcγR interaction. Thus, for HIV-passive antibody prophylaxis, these results, together with existing literature, emphasize the importance of neutralization potency for clinical antibodies, with effector function requiring evaluation for individual antibodies.The mechanisms by which environmental exposures contribute to the pathogenesis of lung fibrosis are unclear. Here, we demonstrate an increase in cadmium (Cd) and carbon black (CB), common components of cigarette smoke (CS) and environmental particulate matter (PM), in lung tissue from subjects with idiopathic pulmonary fibrosis (IPF). Cd concentrations were directly proportional to citrullinated vimentin (Cit-Vim) amounts in lung tissue of subjects with IPF. Cit-Vim amounts were higher in subjects with IPF, especially smokers, which correlated with lung function and were associated with disease manifestations. Cd/CB induced the secretion of Cit-Vim in an Akt1- and peptidylarginine deiminase 2 (PAD2)-dependent manner. Cit-Vim mediated fibroblast invasion in a 3D ex vivo model of human pulmospheres that resulted in higher expression of CD26, collagen, and α-SMA. Cit-Vim activated NF-κB in a TLR4-dependent fashion and induced the production of active TGF-β1, CTGF, and IL-8 along with higher surface expression of TLR4 in lung fibroblasts. To corroborate ex vivo findings, mice treated with Cit-Vim, but not Vim, independently developed a similar pattern of fibrotic tissue remodeling, which was TLR4 dependent. Moreover, wild-type mice, but not PAD2-/- and TLR4 mutant (MUT) mice, exposed to Cd/CB generated high amounts of Cit-Vim, in both plasma and bronchoalveolar lavage fluid, and developed lung fibrosis in a stereotypic manner. Together, these studies support a role for Cit-Vim as a damage-associated molecular pattern molecule (DAMP) that is generated by lung macrophages in response to environmental Cd/CB exposure. Furthermore, PAD2 might represent a promising target to attenuate Cd/CB-induced fibrosis.Tracking antimalarial drug use and efficacy is essential for monitoring the current spread of antimalarial drug resistance. However, available methods for determining tablet quality and patient drug use are often inaccessible, requiring well-equipped laboratories capable of performing liquid chromatography-mass spectrometry (LC-MS). Here, we report the development of aptamer-based fluorescent sensors for the rapid, specific detection of the antimalarial compounds piperaquine and mefloquine-two slow-clearing partner drugs in current first-line artemisinin-based combination therapies (ACTs). Highly selective DNA aptamers were identified that bind piperaquine and mefloquine with dissociation constants (K d's) measured in the low nanomolar range via two independent methods. The aptamers were isolated from a library of single-stranded DNA molecules using a capture-systematic evolution of ligands by exponential enrichment (SELEX) technique and then adapted into structure-switching aptamer fluorescent sensors. Sensor performance was optimized for the detection of drug from human serum and crushed tablets, resulting in two sensing platforms. The patient sample platform was validated against an LC-MS standard drug detection method in samples from healthy volunteers and patients with malaria. This assay provides a rapid and inexpensive method for tracking antimalarial drug use and quality for the containment and study of parasite resistance, a major priority for malaria elimination campaigns. This sensor platform allows for flexibility of sample matrix and can be easily adapted to detect other small-molecule drugs.Mechanisms governing allogeneic T cell responses after solid organ and allogeneic hematopoietic stem cell transplantation (HSCT) are incompletely understood. To identify lncRNAs that regulate human donor T cells after clinical HSCT, we performed RNA sequencing on T cells from healthy individuals and donor T cells from three different groups of HSCT recipients that differed in their degree of major histocompatibility complex (MHC) mismatch. We found that lncRNA differential expression was greatest in T cells after MHC-mismatched HSCT relative to T cells after either MHC-matched or autologous HSCT. Differential expression was validated in an independent patient cohort and in mixed lymphocyte reactions using ex vivo healthy human T cells. We identified Linc00402, an uncharacterized lncRNA, among the lncRNAs differentially expressed between the mismatched unrelated and matched unrelated donor T cells. We found that Linc00402 was conserved and exhibited an 88-fold increase in human T cells relative to all other samples in the FANTOM5 database. Linc00402 was also increased in donor T cells from patients who underwent allogeneic cardiac transplantation and in murine T cells. Linc00402 was reduced in patients who subsequently developed acute graft-versus-host disease. Calcitriol supplier Linc00402 enhanced the activity of ERK1 and ERK2, increased FOS nuclear accumulation, and augmented expression of interleukin-2 and Egr-1 after T cell receptor engagement. Functionally, Linc00402 augmented the T cell proliferative response to an allogeneic stimulus but not to a nominal ovalbumin peptide antigen or polyclonal anti-CD3/CD28 stimulus. Thus, our studies identified Linc00402 as a regulator of allogeneic T cell function.Despite the role of donor-specific antibodies (DSAs) in recognizing major histocompatibility complex (MHC) antigens and mediating transplant rejection, how and where recipient B cells in lymphoid tissues encounter donor MHC antigens remains unclear. Contrary to the dogma, we demonstrated here that migration of donor leukocytes out of skin or heart allografts is not necessary for B or T cell allosensitization in mice. We found that mouse skin and cardiac allografts and human skin grafts release cell-free donor MHC antigens via extracellular vesicles (EVs) that are captured by subcapsular sinus (SCS) macrophages in lymph nodes or analog macrophages in the spleen. Donor EVs were transported across the SCS macrophages, and donor MHC molecules on the EVs were recognized by alloreactive B cells. This triggered B cell activation and DSA production, which were both prevented by SCS macrophage depletion. These results reveal an unexpected role for graft-derived EVs and open venues to interfere with EV biogenesis, trafficking, or function to restrain priming or reactivation of alloreactive B cells.

Autoři článku: Larsonvittrup6268 (Stampe Holst)