Lanierbass6787
Importantly, this hydrogel assembled pressure sensor demonstrates excellent anti-interference and wearable comfort.Alginate has been widely applied in various biological systems due to its great biocompatibility. Endowing it fluorescent imaging would make people to further understand its complex structure, process and mechanism. In this work, amphiphilic alginate conjugated with aggregation-induced emission (AIE) moiety fluorescent polymer was successfully fabricated through the Ugi one-pot condensation. The synthetic polymer particles were fully evaluated by various characterizations including 1H NMR, FTIR, fluorescent spectroscopies, and transmission electron microscopy (TEM). These amphiphilic alginate particles showed great multicolor fluorescence emission in both solid and solution states. The corresponding biological evaluation results confirmed that the fluorescent biopolymer showed excellent biocompatibility and desirable bioimaging property. Particularly, the leaf stomata were directly visualized using the amphiphilic AIE-active alginate biopolymer. Furthermore, the alginate-based polymer can also be employed as the drug carrier for hydrophobic curcumin. These results indicated that our synthetic AIE-active alginate particles might provide great potential for the further utilization of alginate in the understanding of various relative biological systems.Triple negative breast cancer (TNBC) metastasis is still one of the obstacles in clinical treatment, while highly-effective cancer drugs usually cannot be used for their hydrophobicity and comprehensive system toxicity. This study built a kind of pH-sensitive nanoparticles (PP/H NPs) constructed by poly (lactic-co-glycolic acid) modified with β-cyclodextrin (PLGA-β-CD), polyethyleneimine grafted with benzimidazole (PEI-BM) and low molecular weight heparin (LMWH) to delivery Celastrol (Cela) and ferrocene (Fc) for breast cancer therapy. PLGA-β-CD and PEI-BM were synthesized by amidation reaction, the amphipathic polymer nanoparticles with 108.37 ± 1.02 nm were self-assembled in water. After PP/H NPs treatment, the half maximal inhibitory concentration (IC50) decreased by 91% compared with Cela, and ROS level was also elevated. PP/H NPs led to substantial tumor inhibiting rate (TIR, 65.86%), utilized LMWH to strengthen the anti-metastasis effect of PP/H NPs. PP/H NPs took advantage of exogenous chemotherapeutics and endogenous ROS to inhibit tumor growth, and combined with LMWH to hinder breast cancer metastasis.Efficient photocatalysis methods with a production of less number of toxic intermediates are extremely advantageous for water decontamination. The degradation efficiency, specific surface area, stability and porosity will be improving by wrapping of Fe2O3 using appropriate biopolymers. In this work, Fe2O3 reinforced chitosan (Fe2O3@CS) nanocomposite was fabricated using co-precipitation method. The chitosan makes available its surface for the useful generation of the nanocomposite. These wrapping of Fe2O3 on chitosan provides synergistically improved properties that could be attributed to the elevated partition efficiency and faster transfer of the photo-generated charge carriers, which was substantiated by the experimental outcomes from photoluminescence and ESR spectroscopy. The results obtained from DRS analysis entail the reduction in band gap of Fe2O3@CS (2.52 eV) as compared with 3.52 eV of Fe2O3. The results indicated that 89.2% and 94.6% were the maximum degradations correspondingly for MO and OG. The trapping investigation emphasized the involvement of OH radicals in the degradation of dyes over Fe2O3@CS composites. The five cycles of regeneration experiment recommended the superior photostability of the fabricated Fe2O3@CS composite. This work proposed a practical arrangement and subsequent influence of an advanced photocatalyst for the useful remediation dyes from contaminated water without causing any secondary pollution.Density Functional Theory (DFT) calculations were performed to investigate the adsorption of alkali and alkaline earth metal ions, Na+, K+, Mg2+, and Ca2+ present in seawater by biopolymers, cellulose, chitosan, and chitin. read more Analysis of the optimized geometries of the complexes formed by physisorption of metal ions on biopolymers reveals that monomer of chitin is the best biopolymer for adsorption of Mg2+ ion. Water as a solvent reduces the reactivity of complexes formed, playing a significant role in complex stability, which further proved the effective use of cellulose, chitosan and chitin for real-time applications. Natural Bond Orbital (NBO) analysis and quantum reactivity descriptors of the optimized geometries indicate that the electronic charge transfer between the biopolymer and metal ions acts as a driving force for the complex formation. This study also highlights the significant role of water in physisorption of metal ions on biopolymer.Lycium barbarum polysaccharides (LBPs) are known for their beneficial effects on diabetes, NAFLD and related chronic metabolic diseases induced by high-fat diet (HFD). However, the relevant researches are mainly about the whole crude polysaccharides, the specific active ingredient of LBPs and its bioactivity have been rarely explored. Herein, a homogeneous polysaccharide (LBP-W) was isolated and purified from crude LBPs. Structure characterizations indicated that LBP-W contained a main chain consisting of a repeated unit of →6)-β-Galp(1 → residues with branches composed of α-Araf, β-Galp and α-Rhap residues at position C-3. The objective of this study was to evaluate the anti-obesogenic effect of LBP-W and figure out the underlying mechanisms. In vivo efficacy trial illustrated that LBP-W supplements can alleviate HFD-induced mice obesity significantly. Gut microbiota analysis showed that LBP-W not only improved community diversity of intestinal flora, but also regulated their specific genera. Moreover, LBP-W can increase the content of short-chain fatty acids (SCFAs), a metabolite of the intestinal flora. In summary, all these results demonstrated that the homogeneous polysaccharide purified from L. barbarum could be used as a prebiotic agent to improve obesity by modulating the composition of intestinal flora and the metabolism of SCFAs.