Langhoffdamgaard8034

Z Iurium Wiki

More tumor heterogeneity was found in KRAS mutated patients compared to KRAS wild-type (KRASwt) patients and when using sum of longest diameters versus sum of products of diameters. Tumor heterogeneity quantified as the median patient's CC was found to be a predictor of overall survival (OS) (HR = 1.44, 95% CI 1.08-1.92), especially in KRASwt patients. Intra- and inter-tumor tissue heterogeneities were assessed with CICIL. Derived metrics of heterogeneity were found to be a predictor of OS time. Considering differences between lesions' TS dynamics could improve oncology models in favor of a better prediction of OS.Control of musculoskeletal yy system through functional electrical stimulation (FES) still remains a complex and a challenging process. Indeed, the used musculoskeletal models are often complex and highly nonlinear, which makes their control and inversion (getting appropriate inputs from a desired outputs) very difficult. On the other hand, the system flatness has been proved to be an efficient method for nonlinear system control, since in this technique, the nonlinear system can be controlled more easily through its flat outputs. Therefore, it is very promising to apply this control technique on the musculoskeletal system, to overcome its problems, which has never been explored so far. The aim of this work is to explore the flatness technique and its feasibility on the knee joint musculoskeletal system in dynamic condition, controlled by electrically stimulated quadriceps muscle. A mathematical proof developed in the current work highlights that the two-input musculoskeletal system is flat, where two flat outputs are the muscle stiffness and the knee joint angle. It also shows that the single-input musculoskeletal system is not flat. These results are crucial for flatness-based control of musculoskeletal systems, since this model in literature deals with a single input. Simulation results in open-loop control of two-input system highlight the consistency of the mathematical proof, and the applicability of this technique on the musculoskeletal system, where its simulated outputs fit perfectly with the desired ones if the model is considered perfect. When, one parameter of the system is not well estimated (10% of error), simulations show limits of open-loop control, with a joint angle rms deviation of 4%; hence, the closed-loop control should be considered. Graphical Abstract Flatness Study and control of Musculoskeletal systems.Exposure to prenatal stress increases offspring risk for long-term neurobehavioral impairments and psychopathology, such as Attention Deficit Hyperactivity Disorder (ADHD). Epigenetic regulation of glucocorticoid pathway genes may be a potential underlying mechanism by which maternal conditions 'program' the fetal brain for downstream vulnerabilities. The present study aims to investigate whether mRNA expression of glucocorticoid pathway genes in the placenta predict offspring negative affect during early childhood (between 6 and 24 months). Participants include 318 mother-child dyads participating in a longitudinal birth cohort study. click here Placental mRNA expression of glucocorticoid pathway genes (HSD11B1, HSD11B2, NR3C1, NCOR2) were profiled and negative affect traits of the offspring were measured at 6, 12, 18, and 24 months. HSD11B1 mRNA expression significantly predicted negative affect (β = -.09, SE = .04; p = .036), and Distress to Limitations trajectories (β = -.13, SE = .06; p = .016). NCOR2 mRNA expression significantly predicted Distress to Limitations (β = .43, SE = .21; p = .047), and marginally predicted Sadness trajectories (β = .39, SE = .21; p = .068). HSD11B2 and NR3C1 did not predict trajectories of Negative Affect or subscale scores. Infant negative affect traits were assessed via maternal self-report, and deviated from linearity across follow-up. mRNA expression of glucocorticoid pathway genes in the placenta may be a potentially novel tool for early identification of infants at greater risk for elevated negative affect. Further study is needed to validate the utility of mRNA expression of glucocorticoid pathway genes in the placenta.There is strong evidence that peers are of central importance to children's and adolescents' social and emotional adaptation and success in school. However, it remains an open question as to whether callous-unemotional (CU) traits, or interpersonal and affective deficits that pose risk for antisocial behaviors and psychopathy, are related to social-behavioral outcomes as assessed by those who are believed to have the most accurate perspectives on such outcomes - young adolescents' peers. Using data from a longitudinal and multi-method study of peer relations (N = 379, % female = 51.90, Mage = 10.24 at Time 1), the current study addressed this gap by examining the links between teacher-reports of CU traits and conduct problems (CP) and peer-reports of the extent to which young adolescents are aggressive, victimized, excluded, prosocial, and sociable during the Fall and Spring semesters in Grade 5 (Times 1and 2) and Grade 6 (Times 3 and 4). Results revealed that teacher-rated CP, but not CU traits, was associated positively with peer-reports of aggression. CU traits, but not CP, was associated positively with victimization/exclusion and associated negatively with prosociality. CU traits and CP demonstrated opposite relations with sociability, with CU traits demonstrating a negative association. Findings are discussed in the context of the broader literature examining the social-behavioral correlates of CU traits.Heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) was purified from A431 cell-conditioned media based on its capacity to bind to fibroblast growth factor 1 and 2 (FGF-1 and FGF-2). HBp17/FGFBP-1 has been observed to induce the tumorigenic potential of epithelial cells and is highly expressed in oral cancer cell lines and tissues. HBp17/FGFBP-1 is also recognized as a pro-angiogenic molecule as a consequence of its interaction with FGF-2. We have previously reported that Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, downregulated the expression of HBp17/FGFBP-1 and inhibited the proliferation of squamous cell carcinoma (SCC) cells in vitro and in vivo through NF-κb inhibition. To explore the possibility of microRNA (miRNA) control of HBp17/FGFBP-1, we analyzed exosomal miRNAs from medium conditioned by A431 cells treated with ED-71. Microarray analysis revealed that 12 exosomal miRNAs were upregulated in ED-71-treated A431 cells. Among them, miR-6887-5p was identified to have a predicted mRNA target matching the 3' untranslated region (3'-UTR) of HBp17/FGFBP-1.

Autoři článku: Langhoffdamgaard8034 (Nielsen Lin)