Langemcqueen6083

Z Iurium Wiki

Vegetable consumption is a potential toxin exposure pathway for humans. Studies have recognized that vegetables can uptake organic contaminants via roots and translocate pollutants to their aerial parts. However, the aerial parts might also directly uptake polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. This has not been extensively studied. The aim of this study was to explore the uptake and translocation of PAHs in contaminated soil-air-vegetable systems. Sixteen individual PAHs in contaminated soils, vegetable roots, and leaves were identified using GC-MS. The results showed that the average PAH concentrations both in roots and leaves from the reference soil, the moderately contaminated soil, and the heavily polluted soil increased as expected. PAHs with log KOW less then 5 accumulated more easily in roots and leaves. Using a Pearson correlation analysis, isomer ratios, and a principal component analysis (PCA), it was found that the contaminated soil not only caused PAH accumulation in roots, but also increased the PAH concentration in leaves. Selleck Camptothecin Quantitatively, the absorption of PAHs in roots in the moderately contaminated soil (70.3 ng m-3) was approximately twice that of the reference soil (40.8 ng m-3). The PAHs absorbed by vegetable roots in the heavily polluted soil (74.7 ng m-3) was only slightly higher than that of the moderately polluted soil. In addition, the PAH dose volatilized into the air from the reference soil, the moderately contaminated soil, and the heavily polluted soil also showed an increasing trend. The incremental lifetime cancer risk (ILCR) indicated that adult females had a higher cancer risk via vegetable consumption than other groups. Although vegetable consumption had a slight effect on cancer risk for some groups in the present study, the cancer risk of PAHs caused by eating vegetables grown in heavily contaminated soil still requires attention.The source for Lead (Pb) pollution in soils from the heavily industrialized area located along the coast of the Eastern Mediterranean, Haifa Bay, Northern Israel, is studied using the lead isotopic composition. The uniqueness of the studied data set is that it includes samples of soils, road-wash, and storm-dust sampled for nearly three decades (1988-2017). Road-wash sediments are similar in both elemental and Pb isotopic composition to soils sampled in the same year (2010), indicating re-suspension of local soil, as its origin. Soils sampled during and before 1993 show no evidence for Pb contamination (bulk soil values), although Pb as an additive was already in use. Furthermore, soil overturns hinder the possibility to trace changes in the Pb isotopic composition with time in soils of the same location. Soils sampled from 1995-8 to 2013 were significantly dominated by Post-1992 Pb additive, pointing to Pb's peak as an additive. Soils Pb and Zn Enrichment factors for most samples are below 5, and their anthropogenic source is likely common. Forest fire enriched Pb and Zn in the soil, and their Pb isotope compositions reflect this enrichment. Lead from the Hod Assaf recycling plant detected up to some 2.5 km away, and although not analyzed in the current study, dioxin-like compounds possibly accompanied Pb.Rice paddies are one of the largest greenhouse gases (GHGs) facilitators that are predominantly regulated by nitrogen (N) fertilization. Optimization of N uses based on the yield has been tried a long since, however, the improvement of the state-of-the-art technologies and the stiffness of global warming need to readjust N rate. Albeit, few individual studies started to, herein attempted as a systematic review to generalize the optimal N rate that minimizes global warming potential (GWP) concurrently provides sufficient yield in the rice system. To satisfy mounted food demand with inadequate land & less environmental impact, GHGs emissions are increasingly evaluated as yield-scaled basis. This systematic review (20 published studies consisting of 21 study sites and 190 observations) aimed to test the hypothesis that the lowest yield-scaled GWP would provide the minimum GWP of CH4 and N2O emissions from rice system at near optimal yields. Results revealed that there was a strong polynomial quadratic relationship between CH4 emissions and N rate and strong positive correlation between N2O emissions and N rate. Compared to control the low N dose emitted less (23%) CH4 whereas high N dose emitted higher (63%) CH4 emission. The highest N2O emission observed at moderated N level. In total GWP, about 96% and 4%, GHG was emitted as CH4 and N2O, respectively. The mean GWP of CH4 and N2O emissions from rice was 5758 kg CO2 eq ha-1. The least yield-scaled GWP (0.7565 (kg CO2 eq. ha-1)) was recorded at 190 kg N ha-1 that provided the near utmost yield. This dose could be a suitable dose in midseason drainage managed rice systems especially in tropical and subtropical climatic conditions. This yield-scaled GWP supports the concept of win-win for food security and environmental aspects through balancing between viable rice productivity and maintaining convincing greenhouse gases.Organochlorine pesticides (OCPs) are well known synthetic pesticides widely used in agricultural practices and public health program. Higher toxicity, slow degradation, and bioaccumulation are the significant challenges of OCPs. Due to its uses in agricultural and public health, contamination of drinking water and water table also increases day by day. Contaminated drinking water has become a significant issue and alarming signal for public health globally. The purpose of this study was to assess the recent trend of organochlorine pesticides (OCPs) level in drinking water and blood samples of the North Indian population and also to find out its association with glucose intolerance, lipid metabolism, and insulin resistance, which are known risk factors of type 2 diabetes mellitus (T2DM). A case-control study was conducted on 130 Non-Glucose intolerance (NGT), 130 pre-diabetes and 130 recently diagnosed T2DM subjects of the age group of 30-70 years. Patients consuming drinking water from the same source for at least ten years were included in this study for blood and water samples collection.

Autoři článku: Langemcqueen6083 (Dunlap Bagge)