Landrymatthiesen9679
These results indicate that TRPV2 is closely linked to the detection of extracellular mechanical signals, and that conversion of mechanical and biological signals plays an important role in regulating the biological behavior of cells. This study offers a new perspective on the cellular and biochemical events underlying IVDD which could result in novel treatments.An interactive crosstalk between tumor and stroma cells is essential for metastatic melanoma progression. We evidenced that ESDN/DCBLD2/CLCP1 plays a crucial role in endothelial cells during the spread of melanoma. Precisely, increased extravasation and metastasis formation were revealed in ESDN-null mice injected with melanoma cells, even if the primary tumor growth, vessel permeability, and angiogenesis were not enhanced. Interestingly, improved adhesion of melanoma cells to ESDN-depleted endothelial cells was observed, due to the presence of higher levels of E-selectin transcripts/proteins in ESDN-defective cells. In accordance with these results, anticorrelation was observed between ESDN and E-selectin in human endothelial cells. Most importantly, our data revealed that cimetidine, an E-selectin inhibitor, was able to block cell adhesion, extravasation, and metastasis formation in ESDN-null mice, underlying a major role of ESDN in E-selectin transcription upregulation, which according to our data, may presumably be linked to STAT3. Based on our results, we propose a protective role for ESDN during the spread of melanoma and reveal its therapeutic potential.There has been an increasing focus on the tumorigenic potential of leukemia initiating cells (LICs) in acute myeloid leukemia (AML). Despite the important role of selective autophagy in the life-long maintenance of hematopoietic stem cells (HSCs), cancer progression, and chemoresistance, the relationship between LICs and selective autophagy remains to be fully elucidated. Sequestosome 1 (SQSTM1), also known as p62, is a selective autophagy receptor for the degradation of ubiquitinated substrates, and its loss impairs leukemia progression in AML mouse models. In this study, we evaluated the underlying mechanisms of mitophagy in the survival of LICs with XRK3F2, a p62-ZZ inhibitor. We demonstrated that XRK3F2 selectively impaired LICs but spared normal HSCs in both mouse and patient-derived tumor xenograft (PDX) AML models. Mechanistically, we observed that XRK3F2 blocked mitophagy by inhibiting the binding of p62 with defective mitochondria. Our study not only evaluated the effectiveness and safety of XRK3F2 in LICs, but also demonstrated that mitophagy plays an indispensable role in the survival of LICs during AML development and progression, which can be impaired by blocking p62.Twenty mucin genes have been identified and classified in two groups (encoding secreted and membrane-bound proteins). Secreted mucins participate in mucus formation by assembling a 3-dimensional network via oligomerization, whereas membrane-bound mucins are anchored to the outer membrane mediating extracellular interactions and cell signaling. Both groups have been associated with carcinogenesis progression in epithelial cancers, and are therefore considered as potential therapeutic targets. BTK inhibitors high throughput screening In the present review, we discuss the link between mucin expression patterns and patient survival and propose mucins as prognosis biomarkers of epithelial cancers (esophagus, gastric, pancreatic, colorectal, lung, breast or ovarian cancers). We also investigate the relationship between mucin expression and overall survival in the TCGA dataset. In particular, epigenetic mechanisms regulating mucin gene expression, such as aberrant DNA methylation and histone modification, are interesting as they are also associated with diagnosis or prognosis significance. Indeed, mucin hypomethylation has been shown to be associated with carcinogenesis progression and was linked to prognosis in colon cancer or pancreatic cancer patients. Finally we describe the relationship between mucin expression and non-coding RNAs that also may serve as biomarkers. Altogether the concomitant knowledge of specific mucin-pattern expression and epigenetic regulation could be translated as biomarkers with a better specificity/sensitivity performance in several epithelial cancers.Drugs able to efficiently counteract progression of multiple sclerosis (MS) are still an unmet need. Several lines of evidence indicate that histone deacetylase inhibitors (HDACi) are clinically-available epigenetic drugs that might be repurposed for immunosuppression in MS therapy. Here, we studied the effects of HDACi on disease evolution in myelin oligodendrocyte glycoprotein (MOG)-immunized NOD mice, an experimental model of progressive experimental autoimmune encephalomyelitis (PEAE). To obtain data of potential clinical relevance, the HDACi panobinostat, givinostat and entinostat were administered orally adopting a daily treatment protocol after disease onset. We report that the 3 drugs efficiently reduced in vitro lymphocyte proliferation in a dose-dependent manner. Notably, however, none of the drugs delayed evolution of PEAE or reduced lethality in NOD mice. In striking contrast with this, however, the lymphocyte proliferation response to MOG as well as Th1 and Th17 spinal cord infiltrates were significantly lower in animals exposed to the HDACi compared to those receiving vehicle. When put into a clinical context, for the first time data cast doubt on the relevance of HDACi to treatment of progressive MS (PMS). Also, our findings further indicate that, akin to PMS, neuropathogensis of PEAE in NOD mice becomes independent from autoimmunity, thereby corroborating the relevance of this model to experimental PMS research.Nuclear receptors play pleiotropic roles in cell differentiation, development, proliferation, and metabolic processes to govern liver physiology and pathology. The nuclear receptor, liver receptor homolog-1 (LRH-1, NR5A2), originally identified in the liver as a regulator of bile acid and cholesterol homeostasis, was recently recognized to coordinate a multitude of other hepatic metabolic processes, including glucose and lipid processing, methyl group sensing, and cellular stress responses. In this review, we summarize the physiological and pathophysiological functions of LRH-1 in the liver, as well as the molecular mechanisms underlying these processes. This review also focuses on the recent advances highlighting LRH-1 as an attractive target for liver-associated diseases, such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC).