Lancastersanford5978
The Lund collection is one of the oldest subfossil collections in the world. The vast assemblage of subfossils was collected in the 1830s and 1840s by Peter Wilhelm Lund in Lagoa Santa, Brazil, and was shipped to Copenhagen in 1848, where it was stored in various locations around the city with little attention for the future preservation of the collection. So far, successful genetic research on the material collected by Lund has been limited to two samples of human petrous bone. However, less is known about the preservation conditions of the vast amounts of small and fragmentary bones stored in the collection. To address this, we studied ancient DNA from bulk bone samples of approximately 100 bone fragments from the P.W. Lund collection from boxes with varying degrees of physical preservation conditions. Using bulk bone metabarcoding, we found a high species diversity in all samples. In total, we identified 17 species, representing 11 mammals, two birds, one fish, and three frogs. Of these, two species are new to the collection. Collectively, these results exhibit the potential of future genetic studies on the famous P.W. Lund collection and suggest that the effects of poor storage conditions are probably negligible compared with the long-term in situ degradation that specimens undergo before excavation.The distribution of a group of fish and macroinvertebrates (n = 52) resident in the US Northeast Shelf large marine ecosystem were characterized with species distribution models (SDM), which in turn were used to estimate occurrence and biomass center of gravity (COG). The SDMs were fit using random forest machine learning and were informed with a range of physical and biological variables. The estimated probability of occurrence and biomass from the models provided the weightings to determine depth, distance to the coast, and along-shelf distance COG. The COGs of occupancy and biomass habitat tended to be separated by distances averaging 50 km, which approximates half of the minor axis of the subject ecosystem. During the study period (1978-2018), the biomass COG has tended to shift to further offshore positions whereas occupancy habitat has stayed at a regular spacing from the coastline. Both habitat types have shifted their along-shelf distances, indicating a general movement to higher latitude or to the Northeast for this ecosystem. However, biomass tended to occur at lower latitudes in the spring and higher latitude in the fall in a response to seasonal conditions. Distribution of habitat in relation to depth reveals a divergence in response with occupancy habitat shallowing over time and biomass habitat distributing in progressively deeper water. These results suggest that climate forced change in distribution will differentially affect occurrence and biomass of marine taxa, which will likely affect the organization of ecosystems and the manner in which human populations utilize marine resources.Splitting of the genus Penaeus sensu lato into six new genera based on morphological features alone has been controversial in penaeid shrimp taxonomy. Several studies focused on building phylogenetic relations among the genera of Penaeus sensu lato. However, they lack in utilizing full mitochondrial DNA genome of shrimp representing all the six controversial genera. For the first time, the present study targeted the testing of all the six genera of Penaeus sensu lato for phylogenetic relations utilizing complete mitochondrial genome sequence. In addition, the study reports for the first time about the complete mitochondrial DNA genome sequence of Fenneropenaeus indicus, an important candidate species in aquaculture and fisheries, and utilized it for phylogenomics. The maximum likelihood and Bayesian approaches were deployed to generate and comprehend the phylogenetic relationship among the shrimp in the suborder, Dendrobranchiata. The phylogenetic relations established with limited taxon sampling considered in the study pointed to the monophyly of Penaeus sensu lato and suggested collapsing of the new genera to a single genus. Further, trends in mitogenome-wide estimates of average amino acid identity in the order Decapoda and the genus Penaeus sensu lato supported restoration of the old genus, Penaeus, rather promoting the creation of new genera.We conducted a comprehensive analysis of the phylogenetic, phylogeographic, and demographic relationships of Caspian cobra (Naja oxiana; Eichwald, 1831) populations based on a concatenated dataset of two mtDNA genes (cyt b and ND4) across the species' range in Iran, Afghanistan, and Turkmenistan, along with other members of Asian cobras (i.e., subgenus Naja Laurenti, 1768). Our results robustly supported that the Asiatic Naja are monophyletic, as previously suggested by other studies. Furthermore, N. kaouthia and N. sagittifera were recovered as sister taxa to each other, and in turn sister clades to N. oxiana. Our results also highlighted the existence of a single major evolutionary lineage for populations of N. oxiana in the Trans-Caspian region, suggesting a rapid expansion of this cobra from eastern to western Asia, coupled with a rapid range expansion from east of Iran toward the northeast. However, across the Iranian range of N. oxiana, subdivision of populations was not supported, and thus, a single evolutionary significant unit is proposed for inclusion in future conservation plans in this region.Molecular approaches to calculate effective population size estimates (Ne) are increasingly used as an alternative to long-term demographic monitoring of wildlife populations. However, the complex ecology of most long-lived species and the consequent uncertainties in model assumptions means that effective population size estimates are often imprecise. Although methods exist to incorporate age structure into Ne estimations for long-lived species with overlapping generations, they are rarely used owing to the lack of relevant information for most wild populations. Here, we performed a case study on an elusive woodland bat, Myotis bechsteinii, to compare the use of the parentage assignment Ne estimator (EPA) with the more commonly used linkage disequilibrium (LD) Ne estimator in detecting long-term population trends, and assessed the impacts of deploying different overall sample sizes. We used genotypic data from a previously published study, and simulated 48 contrasting demographic scenarios over 150 years using the life history characteristics of this species The LD method strongly outperformed the EPA method. As expected, smaller sample sizes resulted in a reduced ability to detect population trends. Nevertheless, even the smallest sample size tested (n = 30) could detect important changes (60%-80% decline) with the LD method. These results demonstrate that genetic approaches can be an effective way to monitor long-lived species, such as bats, provided that they are undertaken over multiple decades.Environmental DNA (eDNA) metabarcoding has revolutionized biodiversity monitoring and invasive pest biosurveillance programs. The introduction of insect pests considered invasive alien species (IAS) into a non-native range poses a threat to native plant health. The early detection of IAS can allow for prompt actions by regulating authorities, thereby mitigating their impacts. In the present study, we optimized and validated a fast and cost-effective eDNA metabarcoding protocol for biosurveillance of IAS and characterization of insect and microorganism diversity. Forty-eight traps were placed, following the CFIA's annual forest insect trapping survey, at four locations in southern Ontario that are high risk for forest IAS. We collected insects and eDNA samples using Lindgren funnel traps that contained a saturated salt (NaCl) solution in the collection jar. Using cytochrome c oxidase I (COI) as a molecular marker, a modified Illumina protocol effectively identified 2,535 Barcode Index Numbers (BINs). BINs were distributed among 57 Orders and 304 Families, with the vast majority being arthropods. Two IAS (Agrilus planipennis and Lymantria dispar) are regulated by the Canadian Food Inspection Agency (CFIA) as plant health pests, are known to occur in the study area, and were identified through eDNA in collected traps. Similarly, using 16S ribosomal RNA and nuclear ribosomal internal transcribed spacer (ITS), five bacterial and three fungal genera, which contain species of regulatory concern across several Canadian jurisdictions, were recovered from all sampling locations. Our study results reaffirm the effectiveness and importance of integrating eDNA metabarcoding as part of identification protocols in biosurveillance programs.Dryophthorinae is an economically important, ecologically distinct, and ubiquitous monophyletic group of pantropical weevils with more than 1,200 species in 153 genera. This study provides the first comprehensive phylogeny of the group with the aim to provide insights into the process and timing of diversification of phytophagous insects, inform classification and facilitate predictions. The taxon sampling is the most extensive to date and includes representatives of all five dryophthorine tribes and all but one subtribe. The phylogeny is based on secondary structural alignment of 18S and 28S rRNA totaling 3,764 nucleotides analyzed under Bayesian and maximum likelihood inference. We used a fossil-calibrated relaxed clock model with two approaches, node-dating and fossilized birth-death models, to estimate divergence times for the subfamily. learn more All tribes except the species-rich Rhynchophorini were found to be monophyletic, but higher support is required to ascertain the paraphyly of Rhynchophorini with more confidence. Nephius is closely related to Dryophthorini and Stromboscerini, and there is strong evidence for paraphyly of Sphenophorina. We find a large gap between the divergence of Dryophthorinae from their sister group Platypodinae in the Jurassic-Cretaceous boundary and the diversification of extant species in the Cenozoic, highlighting the role of coevolution with angiosperms in this group.Inclusive fitness is a concept widely utilized by social biologists as the quantity organisms appear designed to maximize. However, inclusive fitness theory has long been criticized on the (uncontested) grounds that other quantities, such as offspring number, predict gene frequency changes accurately in a wider range of mathematical models. Here, we articulate a set of modeling assumptions that extend the range of scenarios in which inclusive fitness can be applied. We reanalyze recent formal analyses that searched for, but did not find, inclusive fitness maximization. We show (a) that previous models have not used Hamilton's definition of inclusive fitness, (b) a reinterpretation of Hamilton's definition that makes it usable in this context, and (c) that under the assumption of probabilistic mixing of phenotypes, inclusive fitness is indeed maximized in these models. We also show how to understand mathematically, and at an individual level, the definition of inclusive fitness, in an explicit population genetic model in which exact additivity is not assumed. We hope that in articulating these modeling assumptions and providing formal support for inclusive fitness maximization, we help bridge the gap between empiricists and theoreticians, which in some ways has been widening, demonstrating to mathematicians why biologists are content to use inclusive fitness, and offering one way to utilize inclusive fitness in general models of social behavior.