Lancastermouritsen2361

Z Iurium Wiki

Ectomycorrhizal fungi (EMF) grow as saprotrophs in soil and interact with plants, forming mutualistic associations with roots of many economically and ecologically important forest tree genera. EMF ensheath the root tips and produce an extensive extramatrical mycelium for nutrient uptake from the soil. In contrast to other mycorrhizal fungal symbioses, EMF do not invade plant cells but form an interface for nutrient exchange adjacent to the cortex cells. The interaction of roots and EMF affects host stress resistance but uncovering the underlying molecular mechanisms is an emerging topic. Here, we focused on local and systemic effects of EMF modulating defenses against insects or pathogens in aboveground tissues in comparison with arbuscular mycorrhizal induced systemic resistance. Molecular studies indicate a role of chitin in defense activation by EMF in local tissues and an immune response that is induced by yet unknown signals in aboveground tissues. Volatile organic compounds may be involved in long-distance communication between below- and aboveground tissues, in addition to metabolite signals in the xylem or phloem. In leaves of EMF-colonized plants, jasmonate signaling is involved in transcriptional re-wiring, leading to metabolic shifts in the secondary and nitrogen-based defense metabolism but cross talk with salicylate-related signaling is likely. Ectomycorrhizal-induced plant immunity shares commonalities with systemic acquired resistance and induced systemic resistance. We highlight novel developments and provide a guide to future research directions in EMF-induced resistance.Germplasm should be conserved in such a way that the genetic integrity of a given accession is maintained. In most genebanks, landraces constitute a major portion of collections, wherein the extent of genetic diversity within and among landraces of crops vary depending on the extent of outcrossing and selection intensity infused by farmers. In this study, we assessed the level of diversity within and among 108 diverse landraces and wild accessions using both phenotypic and genotypic characterization. This included 36 accessions in each of sorghum, pearl millet, and pigeonpea, conserved at ICRISAT genebank. We genotyped about 15 to 25 individuals within each accession, totaling 1,980 individuals using the DArTSeq approach. This resulted in 45,249, 19,052, and 8,211 high-quality single nucleotide polymorphisms (SNPs) in pearl millet, sorghum, and pigeonpea, respectively. Sorghum had the lowest average phenotypic (0.090) and genotypic (0.135) within accession distances, while pearl millet had the highest average phenotypic (0.227) and genotypic (0.245) distances. Pigeonpea had an average of 0.203 phenotypic and 0.168 genotypic within accession distances. Analysis of molecular variance also confirms the lowest variability within accessions of sorghum (26.3%) and the highest of 80.2% in pearl millet, while an intermediate in pigeonpea (57.0%). The effective sample size required to capture maximum variability and to retain rare alleles while regeneration ranged from 47 to 101 for sorghum, 155 to 203 for pearl millet, and 77 to 89 for pigeonpea accessions. This study will support genebank curators, in understanding the dynamics of population within and among accessions, in devising appropriate germplasm conservation strategies, and aid in their utilization for crop improvement.Plants evolve innate immunity including resistance genes to defend against pest and pathogen attack. Our previous studies in cotton (Gossypium spp.) revealed that one telomeric segment on chromosome (Chr) 11 in G. hirsutum cv. Acala NemX (rkn1 locus) contributed to transgressive resistance to the plant parasitic nematode Meloidogyne incognita, but the highly homologous segment on homoeologous Chr 21 had no resistance contribution. To better understand the resistance mechanism, a bacterial chromosome (BAC) library of Acala N901 (Acala NemX resistance source) was used to select, sequence, and analyze BAC clones associated with SSR markers in the complex rkn1 resistance region. Sequence alignment with the susceptible G. hirsutum cv. TM-1 genome indicated that 23 BACs mapped to TM-1-Chr11 and 18 BACs mapped to TM-1-Chr 21. Genetic and physical mapping confirmed less BAC sequence (53-84%) mapped with the TM-1 genome in the rkn1 region on Chr 11 than to the homologous region (>89%) on Chr 21. A 3.1-cM genetic distance between the rkn1 flanking markers CIR316 and CIR069 was mapped in a Pima S-7 × Acala NemX RIL population with a physical distance ∼1 Mbp in TM-1. NCBI Blast and Gene annotation indicated that both Chr 11 and Chr 21 harbor resistance gene-rich cluster regions, but more multiple homologous copies of Resistance (R) proteins and of adjacent transposable elements (TE) are present within Chr 11 than within Chr 21. (CC)-NB-LRR type R proteins were found in the rkn1 region close to CIR316, and (TIR)-NB-LRR type R proteins were identified in another resistance rich region 10 cM from CIR 316 (∼3.1 Mbp in the TM-1 genome). The identified unique insertion/deletion in NB-ARC domain, different copies of LRR domain, multiple copies or duplication of R proteins, adjacent protein kinases, or TE in the rkn1 region on Chr 11 might be major factors contributing to complex recombination and transgressive resistance.Alien chromosome introgression has become a valuable tool to broaden the genetic variability of crop plants via chromosome engineering. This study details the procedure to obtain monosomic addition and monosomic substitution lines of the triticale carrying 2Sk chromosome from Aegilops kotchyi Boiss., which harbors Lr54 + Yr37 leaf and stripe rust-resistant gene loci, respectively. Initially, A. kotschyi × Secale cereale artificial amphiploids (2n = 6x = 42 chromosomes, UUSSRR) were crossed with triticale cv. "Sekundo" (2n = 6x = 42, AABBRR) in order to obtain fertile offspring. Cyto-molecular analyses of five subsequent backcrossing generations revealed that 2Sk chromosome was preferentially transmitted. This allowed for the selection of monosomic 2Sk addition (MA2Sk) lines of triticale. TL12-186 price Finally, the 2Sk(2R) substitution plants were obtained by crossing MA2Sk with the nullisomic (N2R) plants of triticale. The presence of 2Sk chromosome in subsequent generations of plants was evaluated using SSR markers linked to Lr54 + Yr37 loci.

Autoři článku: Lancastermouritsen2361 (Espersen Ingram)