Lammmcintyre9612
KIR2DS1 genes may partly explain differences in transmission intensity of malaria since these genes have been positively selected for in places with historically high malaria transmission intensity. The high-throughput, multiplex, real-time HLA-C genotyping PCR method developed will be useful in disease-association studies involving large cohorts.
Krüppel homolog 1 (Kr-h1) is a critical transcription factor for juvenile hormone (JH) signaling, known to play a key role in regulating metamorphosis and adult reproduction in insects. Kr-h1 can also be induced by molting hormone 20-hydroxyecdysone (20E), however, the underlying mechanism of 20E-induced Kr-h1 expression remains unclear. In the present study, we investigated the molecular mechanism of Kr-h1 induction by 20E in the reproductive system of a model lepidopteran insect, Bombyx mori.
Developmental and tissue-specific expression analysis revealed that BmKr-h1 was highly expressed in ovaries during the late pupal and adult stages and the expression was induced by 20E. RNA interference (RNAi)-mediated depletion of BmKr-h1 in female pupae severely repressed the transcription of vitellogenin receptor (VgR), resulting in the reduction in vitellogenin (Vg) deposition in oocytes. BmKr-h1 specifically bound the Kr-h1 binding site (KBS) between - 2818 and - 2805 nt upstream of BmVgR and enhanced the transcription of BmVgR. A 20E cis-regulatory element (CRE) was identified in the promoter of BmKr-h1 and functionally verified using luciferase reporter assay, EMSA and DNA-ChIP. Using pull-down assays, we identified a novel transcription factor B. mori Kr-h1 regulatory protein (BmKRP) that specifically bound the BmKr-h1 CRE and activated its transcription. CRISPR/Cas9-mediated knockout of BmKRP in female pupae suppressed the transcription of BmKr-h1 and BmVgR, resulting in arrested oogenesis.
We identified BmKRP as a new transcription factor mediating 20E regulation of B. mori oogenesis. Our data suggests that induction of BmKRP by 20E regulates BmKr-h1 expression, which in turn induces BmVgR expression to facilitate Vg uptake and oogenesis.
We identified BmKRP as a new transcription factor mediating 20E regulation of B. mori oogenesis. selleck compound Our data suggests that induction of BmKRP by 20E regulates BmKr-h1 expression, which in turn induces BmVgR expression to facilitate Vg uptake and oogenesis.
Precise visualization of meshes and their position would greatly aid in mesh shrinkage evaluation, hernia recurrence risk assessment, and the preoperative planning of salvage repair. Lightweight (LW) meshes are able to preserve abdominal wall compliance by generating less post-implantation fibrosis and rigidity. However, conventional 3D imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI) cannot visualize the LW meshes. Patients sometimes have to undergo a second-look operation for visualizing the mesh implants. The goal of this work is to investigate the potential advantages of Automated 3D breast ultrasound (ABUS) pore texture analysis for implanted LW hernia mesh identification.
In vitro, the appearances of four different flat meshes in both ABUS and 2D hand-held ultrasound (HHUS) images were evaluated and compared. In vivo, pore texture patterns of 87 hernia regions were analyzed both in ABUS images and their corresponding HHUS images.
In vitro studies, the imaginvides more accurate features to characterize pore texture patterns, and ultimately provide more accurate measures for implanted LW mesh identification.
An innovative new ABUS provides additional pore texture visualization, by separating the LW mesh from the fascia tissues. Therefore, ABUS has the potential to provides more accurate features to characterize pore texture patterns, and ultimately provide more accurate measures for implanted LW mesh identification.
Heart disease is the primary cause of morbidity and mortality in the world. It includes numerous problems and symptoms. The diagnosis of heart disease is difficult because there are too many factors to analyze. What's more, the misclassification cost could be very high.
A cost-sensitive ensemble method was proposed to improve the efficiency of diagnosis and reduce the misclassification cost. The proposed method contains five heterogeneous classifiers random forest, logistic regression, support vector machine, extreme learning machine and k-nearest neighbor. T-test was used to investigate if the performance of the ensemble was better than individual classifiers and the contribution of Relief algorithm.
The best performance was achieved by the proposed method according to ten-fold cross validation. The statistical tests demonstrated that the performance of the proposed ensemble was significantly superior to individual classifiers, and the efficiency of classification was distinctively improved by Relief algorithm.
The proposed ensemble gained significantly better results compared with individual classifiers and previous studies, which implies that it can be used as a promising alternative tool in medical decision making for heart disease diagnosis.
The proposed ensemble gained significantly better results compared with individual classifiers and previous studies, which implies that it can be used as a promising alternative tool in medical decision making for heart disease diagnosis.
Pemetrexed, a new generation antifolate drug, has been approved for the treatment of locally advanced or metastatic breast cancer. However, factors affecting its efficacy and resistance have not been fully elucidated yet. ATP-binding cassette (ABC) transporters are predictors of prognosis as well as of adverse effects of several xenobiotics. This study was designed to explore whether ABC transporters affect pemetrexed resistance and can contribute to the optimization of breast cancer treatment regimen.
First, we measured the expression levels of ABC transporter family members in cell lines. Subsequently, we assessed the potential role of ABC transporters in conferring resistance to pemetrexed in primary breast cancer cells isolated from 34 breast cancer patients and the role of ABCC5 in mediating pemetrexed transport and apoptotic pathways in MCF-7 cells. Finally, the influence of ABCC5 expression on the therapeutic effect of pemetrexed was evaluated in an in vivo xenograft mouse model of breast cancer.
the optimization of pemetrexed regimen in breast cancer treatment.
Our results indicated that ABCC5 expression was associated with pemetrexed resistance in vitro and in vivo, and it may serve as a target or biomarker for the optimization of pemetrexed regimen in breast cancer treatment.
Manual microscopy remains a widely-used tool for malaria diagnosis and clinical studies, but it has inconsistent quality in the field due to variability in training and field practices. Automated diagnostic systems based on machine learning hold promise to improve quality and reproducibility of field microscopy. The World Health Organization (WHO) has designed a 55-slide set (WHO 55) for their External Competence Assessment of Malaria Microscopists (ECAMM) programme, which can also serve as a valuable benchmark for automated systems. The performance of a fully-automated malaria diagnostic system, EasyScan GO, on a WHO 55 slide set was evaluated.
The WHO 55 slide set is designed to evaluate microscopist competence in three areas of malaria diagnosis using Giemsa-stained blood films, focused on crucial field needs malaria parasite detection, malaria parasite species identification (ID), and malaria parasite quantitation. The EasyScan GO is a fully-automated system that combines scanning of Giemsa-stained blood films with assessment algorithms to deliver malaria diagnoses. This system was tested on a WHO 55 slide set.
The EasyScan GO achieved 94.3 % detection accuracy, 82.9 % species ID accuracy, and 50 % quantitation accuracy, corresponding to WHO microscopy competence Levels 1, 2, and 1, respectively. This is, to our knowledge, the best performance of a fully-automated system on a WHO 55 set.
EasyScan GO's expert ratings in detection and quantitation on the WHO 55 slide set point towards its potential value in drug efficacy use-cases, as well as in some case management situations with less stringent species ID needs. Improved runtime may enable use in general case management settings.
EasyScan GO's expert ratings in detection and quantitation on the WHO 55 slide set point towards its potential value in drug efficacy use-cases, as well as in some case management situations with less stringent species ID needs. Improved runtime may enable use in general case management settings.
Emerging studies suggest that low-coverage massively parallel copy number variation sequencing (CNV-seq) more sensitive than chromosomal microarray analysis (CMA) for detecting low-level mosaicism. However, a retrospective back-to-back comparison evaluating accuracy, efficacy, and incremental yield of CNV-seq compared with CMA is warranted.
A total of 72 mosaicism cases identified by karyotyping or CMA were recruited to the study. There were 67 mosaic samples co-analysed by CMA and CNV-seq, comprising 40 with sex chromosome aneuploidy, 22 with autosomal aneuploidy and 5 with large cryptic genomic rearrangements.
Of the 67 positive mosaic cases, the levels of mosaicism defined by CNV-seq ranged from 6 to 92% compared to the ratio from 3 to 90% by karyotyping and 20% to 72% by CMA. CNV-seq not only identified all 43 chromosomal aneuploidies or large cryptic genomic rearrangements detected by CMA, but also provided a 34.88% (15/43) increased yield compared with CMA. The improved yield of mosaicism detection by CNV-seq was largely due to the ability to detect low level mosaicism below 20%.
In the context of prenatal diagnosis, CNV-seq identified additional and clinically significant mosaicism with enhanced resolution and increased sensitivity. This study provides strong evidence for applying CNV-seq as an alternative to CMA for detection of aneuploidy and mosaic variants.
In the context of prenatal diagnosis, CNV-seq identified additional and clinically significant mosaicism with enhanced resolution and increased sensitivity. This study provides strong evidence for applying CNV-seq as an alternative to CMA for detection of aneuploidy and mosaic variants.
Plasmodium vivax contributes to over 70% malaria burden in Pakistan, but limited data exists on various aspects including genetic diversity of the parasite as compared to other parts of the world. Since the information about the genetic diversity of P. vivax assists to understand the population dynamics of the parasite, the current study was designed to understand population divergence of P. vivax in Pakistan using circumsporozoite protein (pvcsp) and merozoite surface protein-1 (pvmsp-1) genes as molecular markers.
The PCR for pvcsp and pvmsp-1 genes was carried out for 150 P. vivax isolates, followed by DNA sequencing of 35 and 30, respectively. Genetic diversity and polymorphism were analysed using ChromasPro, ClustalW, MEGA7, DnaSP v.5 and WebLogo programs.
The PCR for pvcsp and pvmsp-1 genes was carried out for 150 P. vivax isolates and resulting the PCR products of 1100bp for pvcsp and ~ 400bp for pvmsp-1 genes, respectively. In the central-repeat region (CRR) of pvcsp gene, sequences comprised of four variable repeats of PRMs, out of which GDRADGQPA (PRM1), GDRAAGQPA (PRM2) were more extensively dispersed among the P.