Ladegaardpovlsen8143
Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.Automatic and accurate lung nodule detection from 3D Computed Tomography (CT) scans plays a vital role in efficient lung cancer screening. Despite the state-of-the-art performance obtained by recent anchor-based detectors using Convolutional Neural Networks (CNNs) for this task, they require predetermined anchor parameters such as the size, number, and aspect ratio of anchors, and have limited robustness when dealing with lung nodules with a massive variety of sizes. To overcome these problems, we propose a 3D sphere representation-based center-points matching detection network (SCPM-Net) that is anchor-free and automatically predicts the position, radius, and offset of nodules without manual design of nodule/anchor parameters. The SCPM-Net consists of two novel components sphere representation and center points matching. First, to match the nodule annotation in clinical practice, we replace the commonly used bounding box with our proposed bounding sphere to represent nodules with the centroid, radius, and lo Moreover, our sphere representation is verified to achieve higher detection accuracy than the traditional bounding box representation of lung nodules. Code is available at https//github.com/HiLab-git/SCPM-Net.Disease prediction is a well-known classification problem in medical applications. Graph Convolutional Networks (GCNs) provide a powerful tool for analyzing the patients' features relative to each other. This can be achieved by modeling the problem as a graph node classification task, where each node is a patient. Due to the nature of such medical datasets, class imbalance is a prevalent issue in the field of disease prediction, where the distribution of classes is skewed. Gilteritinib order When the class imbalance is present in the data, the existing graph-based classifiers tend to be biased towards the major class(es) and neglect the samples in the minor class(es). On the other hand, the correct diagnosis of the rare positive cases (true-positives) among all the patients is vital in a healthcare system. In conventional methods, such imbalance is tackled by assigning appropriate weights to classes in the loss function which is still dependent on the relative values of weights, sensitive to outliers, and in some cases biased towards the minor class(es). In this paper, we propose a Re-weighted Adversarial Graph Convolutional Network (RA-GCN) to prevent the graph-based classifier from emphasizing the samples of any particular class. This is accomplished by associating a graph-based neural network to each class, which is responsible for weighting the class samples and changing the importance of each sample for the classifier. Therefore, the classifier adjusts itself and determines the boundary between classes with more attention to the important samples. The parameters of the classifier and weighting networks are trained by an adversarial approach. We show experiments on synthetic and three publicly available medical datasets. Our results demonstrate the superiority of RA-GCN compared to recent methods in identifying the patient's status on all three datasets. The detailed analysis of our method is provided as quantitative and qualitative experiments on synthetic datasets.An adequate classification of proximal femur fractures from X-ray images is crucial for the treatment choice and the patients' clinical outcome. We rely on the commonly used AO system, which describes a hierarchical knowledge tree classifying the images into types and subtypes according to the fracture's location and complexity. In this paper, we propose a method for the automatic classification of proximal femur fractures into 3 and 7 AO classes based on a Convolutional Neural Network (CNN). As it is known, CNNs need large and representative datasets with reliable labels, which are hard to collect for the application at hand. In this paper, we design a curriculum learning (CL) approach that improves over the basic CNNs performance under such conditions. Our novel formulation reunites three curriculum strategies individually weighting training samples, reordering the training set, and sampling subsets of data. The core of these strategies is a scoring function ranking the training samples. We define two novel scoring functions one from domain-specific prior knowledge and an original self-paced uncertainty score. We perform experiments on a clinical dataset of proximal femur radiographs. The curriculum improves proximal femur fracture classification up to the performance of experienced trauma surgeons. The best curriculum method reorders the training set based on prior knowledge resulting into a classification improvement of 15%. Using the publicly available MNIST dataset, we further discuss and demonstrate the benefits of our unified CL formulation for three controlled and challenging digit recognition scenarios with limited amounts of data, under class-imbalance, and in the presence of label noise. The code of our work is available at https//github.com/ameliajimenez/curriculum-learning-prior-uncertainty.In clinical routine, high-dimensional descriptors of the cardiac function such as shape and deformation are reduced to scalars (e.g. volumes or ejection fraction), which limit the characterization of complex diseases. Besides, these descriptors undergo interactions depending on disease, which may bias their computational analysis. In this paper, we aim at characterizing such interactions by unsupervised manifold learning. We propose to use a sparsified version of Multiple Manifold Learning to align the latent spaces encoding each descriptor and weighting the strength of the alignment depending on each pair of samples. While this framework was up to now only applied to link different datasets from the same manifold, we demonstrate its relevance to characterize the interactions between different but partially related descriptors of the cardiac function (shape and deformation). We benchmark our approach against linear and non-linear embedding strategies, among which the fusion of manifolds by Multiple Kernel Learning, the independent embedding of each descriptor by Diffusion Maps, and a strict alignment based on pairwise correspondences. We first evaluated the methods on a synthetic dataset from a 0D cardiac model where the interactions between descriptors are fully controlled. Then, we transfered them to a population of right ventricular meshes from 310 subjects (100 healthy and 210 patients with right ventricular disease) obtained from 3D echocardiography, where the link between shape and deformation is key for disease understanding. Our experiments underline the relevance of jointly considering shape and deformation descriptors, and that manifold alignment is preferable over fusion for our application. They also confirm at a finer scale the characteristic traits of the right ventricular diseases in our population.Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer's Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.Deep learning techniques for 3D brain vessel image segmentation have not been as successful as in the segmentation of other organs and tissues. This can be explained by two factors. First, deep learning techniques tend to show poor performances at the segmentation of relatively small objects compared to the size of the full image. link2 Second, due to the complexity of vascular trees and the small size of vessels, it is challenging to obtain the amount of annotated training data typically needed by deep learning methods. To address these problems, we propose a novel annotation-efficient deep learning vessel segmentation framework. The framework avoids pixel-wise annotations, only requiring weak patch-level labels to discriminate between vessel and non-vessel 2D patches in the training set, in a setup similar to the CAPTCHAs used to differentiate humans from bots in web applications. The user-provided weak annotations are used for two tasks (1) to synthesize pixel-wise pseudo-labels for vessels and background in each patch, which are used to train a segmentation network, and (2) to train a classifier network. The classifier network allows to generate additional weak patch labels, further reducing the annotation burden, and it acts as a second opinion for poor quality images. link3 We use this framework for the segmentation of the cerebrovascular tree in Time-of-Flight angiography (TOF) and Susceptibility-Weighted Images (SWI). The results show that the framework achieves state-of-the-art accuracy, while reducing the annotation time by ∼77% w.r.t. learning-based segmentation methods using pixel-wise labels for training.
and purpose Treatment non-adherence is quite common among patients with bipolar disorder, negatively affects the social functioning of patients and reduces the quality of life. This pilot study aims to measure the effect of treatment adherence training given to patients with bipolar disorder on treatment adherence, social functioning and quality of life.
The pilot study was conducted with 40 bipolar disorder patients, 19 in the intervention group and 21 in the control group, using a quasi-experimental research design. The data were collected using the Participant Information Form, Medication Adherence Rating Scale, Social Functioning Scale and Short Form of the World Health Organization Quality of Life Questionnaire. Treatment adherence training was given once a week individually for a total of five sessions.
There was no significant difference between the demographic characteristics and pre-test scale scores of the patients in the intervention and control groups before the treatment adherence training (p>0.