Lacroixmoss3169

Z Iurium Wiki

In summary, the erg4Δ and erg6Δ mutants exhibited the most compromised phenotypes. As Erg6p is not involved in the cholesterol biosynthetic pathway, it may become a target for a new generation of antifungal drugs.

Obstructive sleep apnea (OSA) is a frequent syndrome characterized by intermittent hypoxemia and increased prevalence of arterial hypertension and cardiovascular morbidity. In OSA, the presence of patent foramen ovale (PFO) is associated with increased number of apneas and more severe oxygen desaturation. We hypothesized that PFO closure improves sleep-disordered breathing and, in turn, has favorable effects on vascular function and arterial blood pressure. In 40 consecutive patients with newly diagnosed OSA, we searched for PFO. After initial cardiovascular assessment, the 14 patients with PFO underwent initial device closure and the 26 without PFO served as control group. Conventional treatment for OSA was postponed for 3 months in both groups, and polysomnographic and cardiovascular examinations were repeated at the end of the follow-up period. PFO closure significantly improved the apnea-hypopnea index (ΔAHI -7.9±10.4 versus +4.7±13.1 events/h, P=0.0009, PFO closure versus control), the oxygen desaturation index (ΔODI -7.6±16.6 versus +7.6±17.0 events/h, P=0.01), and the number of patients with severe OSA decreased significantly after PFO closure (79% versus 21%, P=0.007). The following cardiovascular parameters improved significantly in the PFO closure group, although remained unchanged in controls brachial artery flow-mediated vasodilation, carotid artery stiffness, nocturnal systolic and diastolic blood pressure (-7 mm Hg, P=0.009 and -3 mm Hg, P=0.04, respectively), blood pressure dipping, and left ventricular diastolic function. In conclusion, PFO closure in OSA patients improves sleep-disordered breathing and nocturnal oxygenation. This translates into an improvement of endothelial function and vascular stiffening, a decrease of nighttime blood pressure, restoration of the dipping pattern, and improvement of left ventricular diastolic function.

URL http//www.clinicaltrials.gov. Unique identifier NCT01780207.

URL http//www.clinicaltrials.gov. Entinostat Unique identifier NCT01780207.

Treatment of hypertensive patients with β-blockers reduces heart rate and decreases central blood pressure less than other antihypertensive drugs, implying that reducing heart rate without altering brachial blood pressure could increase central blood pressure, explaining the increased cardiovascular risk reported with β-blocker. We describe a randomized, double-blind study to explore whether heart rate reduction with the If inhibitor ivabradine had an impact on central blood pressure. We included 12 normotensive patients with stable coronary artery disease, heart rate ≥70 bpm (sinus rhythm), and stable background β-blocker therapy. Patients received ivabradine 7.5 mg BID or matched placebo for two 3-week periods with a crossover design and evaluation by aplanation tonometry. Treatment with ivabradine was associated with a significant reduction in resting heart rate after 3 weeks versus no change with placebo (-15.8±7.7 versus +0.3±5.8 bpm; P=0.0010). There was no relevant between-group difference in change in central aortic systolic blood pressure (-4.0±9.6 versus +2.4±12.0 mm Hg; P=0.13) or augmentation index (-0.8±10.0% versus +0.3±7.6%; P=0.87). Treatment with ivabradine was associated with a modest increase in left ventricular ejection time (+18.5±17.8 versus +2.8±19.3 ms; P=0.074) and a prolongation of diastolic perfusion time (+215.6±105.3 versus -3.0±55.8 ms with placebo; P=0.0005). Consequently, ivabradine induced a pronounced increase in Buckberg index, an index of myocardial viability (+39.3±27.6% versus -2.5±13.5% with placebo; P=0.0015). In conclusion, heart rate reduction with ivabradine does not increase central aortic blood pressure and is associated with a marked prolongation of diastolic perfusion time and an improvement in myocardial perfusion index.

URL https//www.clinicaltrialsregister.eu. Unique identifier 2011-004779-35.

URL https//www.clinicaltrialsregister.eu. Unique identifier 2011-004779-35.Atrial arrhythmia, which includes atrial fibrillation (AF) and atrial flutter (AFL), is common in patients with pulmonary arterial hypertension (PAH), who often have increased sympathetic nerve activity. Here, we tested the hypothesis that autonomic nerves play important roles in vulnerability to AF/AFL in PAH. The atrial effective refractory period and AF/AFL inducibility at baseline and after anterior right ganglionated plexi ablation were determined during left stellate ganglion stimulation or left renal sympathetic nerve stimulation in beagle dogs with or without PAH. Then, sympathetic nerve, β-adrenergic receptor densities and connexin 43 expression in atrial tissues were assessed. The sum of the window of vulnerability to AF/AFL was increased in the right atrium compared with the left atrium at baseline in the PAH dogs but not in the controls. The atrial effective refractory period dispersion was increased in the control dogs, but not in the PAH dogs, during left stellate ganglion stimulation. The voltage thresholds for inducing AF/AFL during anterior right ganglionated plexi stimulation were lower in the PAH dogs than in the controls. The AF/AFL inducibility was suppressed after ablation of the anterior right ganglionated plexi in the PAH dogs. The PAH dogs had higher sympathetic nerve and β1-adrenergic receptor densities, increased levels of nonphosphorylated connexin 43, and heterogeneous connexin 43 expression in the right atrium when compared with the control dogs. The anterior right ganglionated plexi play important roles in the induction of AF/AFL. AF/AFL induction was associated with right atrium substrate remodeling in dogs with PAH.Pulmonary arterial hypertension (PAH), a rapidly fatal vascular disease, strikes women more often than men. Paradoxically, female PAH patients have better prognosis and survival rates than males. The female sex hormone 17β-estradiol has been linked to the better outcome of PAH in females; however, the mechanisms by which 17β-estradiol alters PAH progression and outcomes remain unclear. Because proximal pulmonary arterial (PA) stiffness, one hallmark of PAH, is a powerful predictor of mortality and morbidity, we hypothesized that 17β-estradiol attenuates PAH-induced changes in mechanical properties in conduit proximal PAs, which imparts hemodynamic and energetic benefits to right ventricular function. To test this hypothesis, female mice were ovariectomized and treated with 17β-estradiol or placebo. PAH was induced in mice using SU5416 and chronic hypoxia. Extra-lobar left PAs were isolated and mechanically tested ex vivo to study both static and frequency-dependent mechanical behaviors in the presence or absence of smooth muscle cell activation. Our static mechanical test showed significant stiffening of large PAs with PAH (P less then 0.05). 17β-Estradiol restored PA compliance to control levels. The dynamic mechanical test demonstrated that 17β-estradiol protected the arterial wall from the PAH-induced frequency-dependent decline in dynamic stiffness and loss of viscosity with PAH (P less then 0.05). As demonstrated by the in vivo measurement of PA hemodynamics via right ventricular catheterization, modulation by 17β-estradiol of mechanical proximal PAs reduced pulsatile loading, which contributed to improved ventricular-vascular coupling. This study provides a mechanical mechanism for delayed disease progression and better outcome in female PAH patients and underscores the therapeutic potential of 17β-estradiol in PAH.In the Losartan Intervention for End Point Reduction in Hypertension (LIFE) study, 4.8 years' losartan- versus atenolol-based antihypertensive treatment reduced left ventricular hypertrophy and cardiovascular end points, including cardiovascular death and stroke. However, there was no difference in myocardial infarction (MI), possibly related to greater reduction in myocardial oxygen demand by atenolol-based treatment. Myocardial oxygen demand was assessed indirectly by the left ventricular mass×wall stress×heart rate (triple product) in 905 LIFE participants. The triple product was included as time-varying covariate in Cox models assessing predictors of the LIFE primary composite end point (cardiovascular death, MI, or stroke), its individual components, and all-cause mortality. At baseline, the triple product in both treatment groups was, compared with normal adults, elevated in 70% of patients. During randomized treatment, the triple product was reduced more by atenolol, with prevalences of elevated triple product of 39% versus 51% on losartan (both P≤0.001). In Cox regression analyses adjusting for age, smoking, diabetes mellitus, and prior stroke, MI, and heart failure, 1 SD lower triple product was associated with 23% (95% confidence interval 13%-32%) fewer composite end points, 31% (18%-41%) less cardiovascular mortality, 30% (15%-41%) lower MI, and 22% (11%-33%) lower all-cause mortality (all P≤0.001), without association with stroke (P=0.34). Although losartan-based therapy reduced ventricular mass more, greater heart rate reduction with atenolol resulted in larger reduction of the triple product. Lower triple product during antihypertensive treatment was strongly, independently associated with lower rates of the LIFE primary composite end point, cardiovascular death, and MI, but not stroke.Although microRNAs (miRNAs) are small, non-protein-coding entities, they have important roles in post-transcriptional regulation of most of the human genome. These small entities generate fine-tuning adjustments in the expression of mRNA, which can mildly or massively affect the abundance of proteins. Previously, we found that the expression of miR-30c-2-3p is induced by lysophosphatidic acid and has an important role in the regulation of cell proliferation in ovarian cancer cells. The goal here is to confirm that ATF3 mRNA is a target of miR-30c-2-3p silencing, thereby further establishing the functional role of miR-30c-2-3p. Using a combination of bioinformatics, qRT-PCR, immunoblotting and luciferase assays, we uncovered a regulatory pathway between miR-30c-2-3p and the expression of the transcription factor, ATF3. Lysophosphatidic acids triggers the expression of both miR-30c-2-3p and ATF3, which peak at 1 h and are absent 8 h post stimulation in SKOV-3 and OVCAR-3 serous ovarian cancer cells. The 3´-untranslated region (3´-UTR) of ATF3 was a predicted, putative target for miR-30c-2-3p, which we confirmed as a bona-fide interaction using a luciferase reporter assay. Specific mutations introduced into the predicted site of interaction between miR-30c-2-3p and the 3´-UTR of ATF3 alleviated the suppression of the luciferase signal. Furthermore, the presence of anti-miR-30c-2-3p enhanced ATF3 mRNA and protein after lysophosphatidic acid stimulation. Thus, the data suggest that after the expression of ATF3 and miR-30c-2-3p are elicited by lysophosphatidic acid, subsequently miR-30c-2-3p negatively regulates the expression of ATF3 through post-transcriptional silencing, which prevents further ATF3-related outcomes as a consequence of lysophosphatidic acid signaling.

Autoři článku: Lacroixmoss3169 (Kjeldgaard Mckay)