Kumarwade9718

Z Iurium Wiki

Moreover, geographical region and host plant were two major factors to determine viral populations. Taken together, our results provide the comprehensive overview of viral pathogens infecting two important plants in the family Solanaceae grown in Vietnam.It is well known that the curing residual stress induced during a fabrication process has a great influence on the performance of piezoelectric composite devices. The purpose of this work was to evaluate the residual thermal stress of lead zirconate titanate piezoelectric fiber aluminum (Al) matrix (piezoelectric fiber/Al) composites generated during fabrication and to understand the effect of the residual thermal stress on the electromechanical response. The three-dimensional finite element method was employed, and the residual stress generated during the solidification process of the Al matrix was calculated. The output voltage was also calculated in the analysis when putting stresses on the composite materials in the length direction of the piezoelectric fiber. It was shown that the cooling from higher temperatures increases the electromechanical conversion capability. Furthermore, we also performed the simulation, and we recorded the output voltage under concentrated load to investigate its application as a load position detection sensor, and we also discussed the influence of the position by changing the modeling with a different fiber position in the Al. The residual stress of hot press molded piezoelectric fiber/Al composite was then measured, and the comparison was made with the calculated values. The simulation results revealed that our model predictions reproduced and explained the experimental observations of curing residual stress. After this study, similar models of composite materials can be analyzed by this simulation, and the result can be used to design piezoelectric composite materials.Recycled aggregate concrete (RAC) is a promising solution to address the challenges raised by concrete production. However, the current lack of pertinent design rules has led to a hesitance to accept structural members made with RAC. It would entail even more difficulties when facing application scenarios where brittle failure is possible (e.g., beam in shear). In this paper, existing major shear design formulae established primarily for conventional concrete beams were assessed for RAC beams. Results showed that when applied to the shear test database compiled for RAC beams, those formulae provided only inaccurate estimations with surprisingly large scatter. To cope with this bias, machine learning (ML) techniques deemed as potential alternative predictors were resorted to. First, a Grey Relational Analysis (GRA) was carried out to rank the importance of the parameters that would affect the shear capacity of RAC beams. Then, two contemporary ML approaches, namely, the artificial neural network (ANN) and the ggestions for future works are also given at the end of this paper.With the assistance of surfactant, Fe nanoparticles are supported on g-C3N4 nanosheets by a simple one-step calcination strategy. Meanwhile, a layer of amorphous carbon is coated on the surface of Fe nanoparticles during calcination. Transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP) were used to characterize the morphology, structure, and composition of the catalysts. By electrochemical evaluate methods, such as linear sweep voltammetry (LSV) and cyclic voltammetry (CV), it can be found that Fe25-N-C-800 (calcinated in 800 °C, Fe loading content is 5.35 wt.%) exhibits excellent oxygen reduction reaction (ORR) activity and selectivity. In 0.1 M KOH (potassium hydroxide solution), compared with the 20 wt.% Pt/C, Fe25-N-C-800 performs larger onset potential (0.925 V versus the reversible hydrogen electrode (RHE)) and half-wave potential (0.864 V vs. RHE) and limits current density (2.90 mA cm-2, at 400 rpm). In 0.1 M HClO4, it also exhibits comparable activity. Furthermore, the Fe25-N-C-800 displays more excellent stability and methanol tolerance than Pt/C. Therefore, due to convenience synthesis strategy and excellent catalytic activity, the Fe25-N-C-800 will adapt to a suitable candidate for non-noble metal ORR catalyst in fuel cells.Human papillomaviruses have 8kbp DNA episomal genomes that replicate autonomously from host DNA. During initial infection, the virus increases its copy number to 20-50 copies per cell, causing torsional stress on the replicating DNA. This activates the DNA damage response (DDR) and HPV replicates its genome, at least in part, using homologous recombination. An active DDR is on throughout the HPV life cycle. Two viral proteins are required for replication of the viral genome; E2 binds to 12bp palindromic sequences around the A/T rich origin of replication and recruits the viral helicase E1 via a protein-protein interaction. E1 forms a di-hexameric complex that replicates the viral genome in association with host factors. Transient replication assays following transfection with E1-E2 expression plasmids, along with an origin containing plasmid, allow monitoring of E1-E2 replication activity. Incorporating a bacterial lacZ gene into the origin plasmid allows for the determination of replication fidelity. Here we describe how we exploited this system to investigate replication and repair in mammalian cells, including using damaged DNA templates. We propose that this system has the potential to enhance the understanding of cellular components involved in DNA replication and repair.

Radiation therapy has long been contemplated as an important mode in the treatment of rectal cancer. However, there are few ideal tools available for clinicians to make a radiotherapy decision at the time of diagnosis for rectal cancer. The purpose of this study was to assess whether biomarkers expressed in the biopsy could help to choose the suitable therapy and provide predictive and/or prognostic information.

In total, 30 biomarkers were analyzed in 219 biopsy samples before treatment to discover the possibility of using them as an indicator for radiotherapy selection, diagnosis, survival and recurrence.

Twenty-two biomarkers (COX2-RT, COX2-NonRT, etc.; 36.67%) had diagnostic value. For survival, four biomarkers (NFKBP65, p130, PINCH and PPAR) were significant in regulating gene promoter activity and overall survival, while four had a trend (AEG1, LOX, SATB1 and SIRT6). Three biomarkers (COX2, PINCH and WRAP53) correlated with disease-free survival, while eight had a trend (AEG1, COX2, Ki67, LOX, NFKBP65, PPAR and SATB1). Four biomarkers (COX2-RT, NFKBP65cyto-RT, P130cyto-NonRT and PPARcyto-RT) were independent prognostic factors for recurrence. NFKBP65 and SIRT6 were significantly correlated with lymph node metastasis regardless of radiation. Patients with high AEG1, LOX, NFKBP65, PPAR and SATB1 had or showed a positive trend for better survival after radiotherapy, while those with positive PINCH and WRAP53 expression would not benefit from radiotherapy.

AEG1, LOX, NFKBP65cyto, PPAR and SATB1 could be used as indicators for choosing radiotherapy. COX2-RT, COX2-NonRT and some other biomarkers may provide additional help for diagnosis.

AEG1, LOX, NFKBP65cyto, PPAR and SATB1 could be used as indicators for choosing radiotherapy. COX2-RT, COX2-NonRT and some other biomarkers may provide additional help for diagnosis.Magnesium hydride, despite the decomposition temperature being incompatible with the operating temperature of a typical PEM cell, is still considered a prospective material for hydrogen storage. Hence, this paper presents new aspects of the influence of milling time on the structural changes and temperature of MgH2 decomposition, with particular emphasis on the changes taking place in the first few seconds of the milling process. This paper presents qualitative and quantitative changes in the powder particle morphology determined using scanning electron microscopy (SEM) and infrared particle size analysis (IPS) systems. The crystallographic structure of the powders in the initial state and after mechanical milling was characterized by X-ray diffraction. The decomposition temperature and activation energy were determined by the differential scanning calorimetry (DSC). Changes in the activation energy and decomposition temperature were observed after only 1-2 min of the milling process. Two basic stages of the milling process were distinguished that impacted the MgH2 decomposition temperature, i.e., mechanical activation and a nanostructuring process. The activation was associated with the initial stage of particle size reduction and an increase in the fraction of fresh chemically active powder particle surfaces. On the other hand, the nanostructuring process was related to an additional decrease in the MgH2 decomposition temperature.Equid herpesvirus 1 is one of the most common viral pathogens in the horse population and is associated with respiratory disease, abortion and still-birth, neonatal death and neurological disease. A single point mutation in the DNA polymerase gene (ORF30 A2254G, N752D) has been widely associated with neuropathogenicity of strains, although this association has not been exclusive. This study describes the fortuitous isolation of a strain carrying a new genotype C2254 (H752) from an outbreak in France that lasted several weeks in 2018 and involved 82 horses, two of which showed neurological signs of disease. The strain was characterised as UL clade 10 using the equid herpesvirus 1 (EHV-1) multi-locus sequence typing (MLST) classification but has not been identified or isolated since 2018. The retrospective screening of EHV-1 strains collected between 2016 and 2018 did not reveal the presence of the C2254 mutation. When cultured in vitro, the C2254 EHV-1 strain induced a typical EHV-1 syncytium and cytopathic effect but no significant difference was observed when compared with A2254 and G2254 EHV-1 strains. An experimental infection was carried out on four Welsh mountain ponies to confirm the infectious nature of the C2254 strain. A rapid onset of marked respiratory disease lasting at least 2 weeks, with significant virus shedding and cell-associated viraemia, was observed. Finally, an in vitro antiviral assay using impedance measurement and viral load quantification was performed with three antiviral molecules (ganciclovir (GCV), aciclovir (ACV) and aphidicolin (APD)) on the newly isolated C2254 strain and two other A/G2254 field strains. The three strains showed similar sensitivity to ganciclovir and aphidicolin but both C2254 and A2254 strains were more sensitive to aciclovir than the G2254 strain, based on viral load measurement.The L ↔ Al + Al11Ce3 technologically important eutectic transformation in Al-Ce binary alloys, containing from 5 to 20 wt.% Ce and ranging from hypo- to hypereutectic compositions, was examined along with the microstructure and properties of its solidified product. A combination of thermal analysis and metallography determined the coordinates of the eutectic point at 644.5 ± 0.6 °C and 10.6 wt.% Ce, clarifying the existing literature ambiguity. Despite the high entropy of melting of the Al11Ce3 phase, in hypoeutectic alloys the eutectic was dominated by the regular morphology of periodically arranged lamellae, typical for non-faceted systems. In the lamellar eutectic, however, the faceting of Al11Ce3 was identified at the atomic scale. In contrast, for hypereutectic compositions, the Al11Ce3 eutectic phase exhibited complex morphology, influenced by the proeutectic Al11Ce3 phase. The Al11Ce3 eutectic phase lost its coherency with Al; it was deduced that a partial coherency was present only at early stages of lamellae growth. The orientation relationships between the Al11Ce3 and Al in the eutectic structure, leading to partial coherency, were determined to be Al ║ Al11Ce3 with Al ║ Al11Ce3 and Al ║ Al11Ce3 with Al ║ Al11Ce3. The Al11Ce3 phase with a hardness of 350 HV and Al matrix having 35 HV in their eutectic arrangement formed in situ composite, with the former playing a role of reinforcement. However, the coarse and mostly incoherent Al11Ce3 eutectic phase provided limited strengthening and the Al-Ce alloy consisting of 100% eutectic reached at room temperature a yield stress of just about 70 MPa.Immunoassays are developed based on antigen-antibody interactions. A mimotope is an effective recognition receptor used to study the mechanism of action of antigens and antibodies, and is used for improving the sensitivity of the antibody. In this study, we built a 3D structure of the citrinin (CIT) mimotope X27 and anti-CIT single-chain antibody fragment (ScFv) through a "homologous modeling" strategy. Then, CIT and X27 were respectively docked to anti-CIT ScFv by using the "molecular docking" program. Finally, T28, F29, N30, R31, and Y32 were confirmed as the key binding sites in X27. Furthermore, the result of the phage-ELISA showed that the mutational phage lost the binding activity to the anti-CIT ScFv when the five amino acids were mutated to "alanine", thereby proving the correctness of the molecular docking model. Lastly, a site-directed saturation strategy was adopted for the sites (T28, F29, N30, R31, and Y32). Eighteen different amino acids were introduced to each site on average. The activities of all mutants were identified by indirect competitive ELISA. The sensitivities of mutants T28F, T28I, F29I, F29V, N30T, and N30V were 1.83-, 1.37-, 1.70-, 2.96-, 1.31-, and 2.01-fold higher than that of the wild-type, respectively. In conclusion, the binding model between the CIT and antibody was elaborated for the first time based on the mimotope method, thereby presenting another strategy for improving the sensitivity of citrinin detection in immunoassays.The heterogeneity of colon cancers and their reactions presents both a challenge and promise for personalized medicine. The challenge is to develop effective biologically personalized therapeutics guided by predictive and prognostic biomarkers. Presently, there are several classes of candidate biomarkers, including genomic probes, inhibitory RNAs, assays for immunity dysfunction and, not to be forgotten, specific histopathologic and histochemical features. To develop effective therapeutics, candidate biomarkers must be qualified and validated in comparable independent cohorts, no small undertaking. This process and subsequent deployment in clinical practice involves not only the strong association of the biomarker with the treatment but also careful attention to the prosaic aspects of representative tumor site selection, obtaining a fully adequate sample which is preserved and prepared to optimize high quality analysis. In the future, the clinical utility of biomarker analytical results will benefit from associated clinical and basic science data with the assistance of artificial intelligence techniques. By application of an individualized, selected suite of biomarkers, comprehensively interpreted, individualized, more effective and less toxic therapy for colon cancer will be enabled, thereby fulfilling the promise of personalized medicine.We studied the microstructures and isothermal oxidation of the Nb-silicide-based alloys Nb-11.5Ti-18Si-5Mo-2W-4.9Sn-4.6Ge-4.5Cr-4.7Al-1Hf (JZ4) and Nb-21Ti-18Si-6.7Mo-1.2W-4.4Sn-4.2Ge-4Cr-3.7Al-0.8Hf (JZ5), calculated their average creep rate for the creep goal conditions of T = 1200 °C and σ = 170 MPa, and compared properties of the two alloys with those of other refractory metal (RM) complex concentrated alloys (RCCAs). Both alloys had a density less than 7.3 g/cm3 and lower than the density of multiphase bcc solid solution + M5Si3 silicide RCCAs. There was macrosegregation of Si in both alloys, which had the same phases in their as-cast microstructures, namely βNb5Si3, αNb5Si3, A15-Nb3X (X = Al, Ge, Si, Sn), TM5Sn2X (X = Al, Ge, Si), C14-Cr2Nb, but no solid solution. After heat treatment at 1500 °C for 100 h, a low volume fraction of a W-rich (Nb, W)ss solid solution was observed in both alloys together with βNb5Si3, αNb5Si3 and A15-Nb3X but not the TM5Sn2X, whereas the Laves phase was observed only in JZ4. At 800 °C, both alloys did not pest, and there was no spallation of their scales at 1200 °C. At both temperatures, both alloys followed parabolic oxidation kinetics and their weight changes were lower than those of Ti-rich Nb-silicide-based alloys. The oxidation of both alloys was superior to that of other RCCAs studied to date. For each alloy the Si macrosegregation, volume fraction of solid solution, chemical composition of solid solution and Nb5Si3, and weight changes in isothermal oxidation at 800 and 1200 °C that were calculated using the alloy design methodology NICE agreed well with the experimental results.Pathophysiology of postpartum depression (PPD) has been associated with many factors, such as neuroendocrine, neuroinflammation and neurotransmitter changes. Fish oil (FO) improves PPD both in humans and animals. However, little is known with regards to its pharmacology on a PPD-like rat model. Hence, the current study aimed at investigating the effects of FO on a PPD-like rat model. Female rats were induced with PPD-like symptoms and then randomly divided into six groups (n = 6) for two experimental protocols. Protocol 1 consisted of PPD-like rats (2 mL distilled water), PPD-like + FO (9 g/kg/d) and PPD-like + Fluoxetine (FLX) (15 mg/kg/d) groups of rats, whereas Protocol 2 consisted of PPD-like rats (2 mL distilled water) + PCPA (p-chlorophenylalanine) 150 mg/kg, PPD-like + FO (9 g/kg/d) + PCPA 150 mg/kg and PPD-like + FLX (15 mg/d) + PCPA 150 mg/kg groups of rats, respectively. All treatments were administered orally for 10 days postpartum, except PCPA, which was given intraperitoneally. Prior to euthanasia, the antidepressant-like effect of the FO was evaluated using the forced swimming test (FST) and open field test (OFT) on day 10 postpartum. Biochemical analysis of serotonin, serotonin metabolite and serotonin turnover from their prefrontal cortex and hippocampus were also measured. The results showed that FO decreased immobility time and increased swimming time significantly, but not climbing time in FST. Further, it also decreased serotonin metabolite and turnover significantly in the hippocampus of the PPD-like rats. In contrast, administration with PCPA reversed all the outcomes. The antidepressant-like effects of FO were found to be similar with that of FLX. Thus, it can be concluded that FO exerts its antidepressant-like effects in PPD-like rats through modulation of serotonergic system.SiCp/Al-Si composites with different CeO2 contents were prepared by a powder metallurgy method. The effect of CeO2 content on mechanical properties, friction and wear properties of the composites was studied. The results show that with the increase in CeO2 content from 0 to 1.8 wt%, the density, hardness, friction coefficient of the composites first increases and then decreases, the coefficient of thermal expansion (CTE) and wear rate of the composites first decreases and then increases. When the content of CeO2 was 0.6 wt%, the density and hardness of the composite reached the maximum value of 98.54% and 113.7 HBW, respectively, the CTE of the composite reached the minimum value of 11.1 × 10-6 K-1, the friction coefficient and wear rate of the composite reached the maximum value of 0.32 and the minimum value of 1.02 mg/m, respectively. CeO2 has little effect on the wear mechanism of composites, and the wear mechanism of composites with different CeO2 content is mainly abrasive wear under the load of 550 N. Compared with the content of CeO2, load has a great influence on the wear properties of the composites. The wear mechanism of the composites is mainly oxidation wear and abrasive wear under low load. With the increase in load, the wear degree of abrasive particles is aggravated, and adhesive wear occurs under higher load.This article deals with the phenomenon of tool wear prediction in face milling of aluminum matrix composite materials (AMC), class as hard-to-cut materials. Artificial neural networks (ANN) are one of the tools used to predict tool wear or surface roughness in machining. Model development is applicable when regression models do not give satisfactory results. Because of their mechanical properties based on SiC or Al2O3 reinforcement, AMCs are applied in the automotive and aerospace industry. Due to these materials' abrasive nature, a three-edged end mill with diamond coating was selected to carry out milling tests. In this work, multilayer perceptron (MLP) models were used to predict the tool flank wear VBB and tool corner wear VBC during milling of AMC with 10% SiC content. The signals of vibration acceleration and cutting forces were selected as input to the network, and the tests were carried out with three cutting speeds. Based on the analysis of the developed models, the models with the best efficiency were selected, and the quality of wear prediction was assessed. The main criterion for evaluating the quality of the developed models was the mean square error (MSE) in order to compare measured and predicted value of tool wear.A prediabetic state is a major risk factor for the development of diabetes, and, because of an identical pathophysiological background of both conditions, their prevalence increases parallelly and equally fast. Long-term hyperglycemia is the main cause inducing chronic complications of diabetes, yet the range of glucose levels at which they start has not been yet unequivocally determined. The current data show that chronic microvascular complications of diabetes can be observed in patients with abnormal glucose metabolism in whom glycaemia is higher than optimal but below diagnostic criteria for diabetes. Prediabetes is a heterogenous nosological unit in which particular types are differently characterized and show different correlations with particular kinds of complications. Analysis of the latest research results shows the need to continue studies in a larger population and can imply the need to verify the currently employed criteria of diagnosing diabetes and chronic complications of diabetes in people with prediabetes.Although blood is the basic test material to monitor levels of antipsychotic drugs in a person's system, saliva could serve as a more convenient test material. Therefore, the aim of this novel study was to determine the correlations between the salivary levels of olanzapine and quetiapine (and their metabolites N-demethyl olanzapine and norquetiapine) and the patient's sex and age, dose level, and the time of sampling. The study involved two groups of patients 21 female patients starting treatment immediately after being admitted to the hospital and 36 male and female nursing home residents, long-time users of the studied drugs. Women had lower levels of the tested analytes than men. Quetiapine levels in the saliva of people starting the treatment showed a positive correlation with the age of the patients and a strong positive correlation with the dose level. The saliva levels of olanzapine showed a strong correlation with its metabolite in patients who had recently started treatment. Among long-time users of this drug, salivary levels differed significantly before and after administration. In conclusion, the results indicate that there is a possibility of using saliva as a material for monitoring quetiapine or olanzapine concentrations, especially in people starting treatment.Reactive sulfane sulfur, including persulfide and polysulfide, is a type of regular cellular component, playing an antioxidant role. Its function may be organelle-dependent; however, the shortage of probes for detecting organellar reactive sulfane sulfur has hindered further investigation. Herein, we reported a red fluorescent protein (mCherry)-based probe for specifically detecting intracellular reactive sulfane sulfur. By mutating two amino acid residues of mCherry (A150 and S151) to cysteine residues, we constructed a mCherry mutant, which reacted with reactive sulfane sulfur to form an intramolecular -Sn- bond (n ≥ 3). The bond largely decreased the intensity of 610 nm emission (excitation at 587 nm) and slightly increased the intensity of 466 nm emission (excitation at 406 nm). The 466/610 nm emission ratio was used to indicate the relative abundance of reactive sulfane sulfur. We then expressed this mutant in the cytoplasm and mitochondria of Saccharomyces cerevisiae. The 466/610 nm emission ratio revealed that mitochondria had a higher level of reactive sulfane sulfur than cytoplasm. Thus, the mCherry mutant can be used as a specific probe for detecting reactive sulfane sulfur in vivo.Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein-protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes.Lekethromycin, a new macrolide lactone, exhibits significant antibacterial activity. In this study, a reliable analytical ultrahigh-performance liquid chromatography electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UPLC-ESI-Orbitrap-MS) method was established and validated for the detection of lekethromycin in rat plasma. After a simple acetonitrile (ACN)-mediated plasma protein precipitation, chromatographic separation was performed on a Phenomenex Luna Omega PS C18 column (30 × 2.1 mm i.d. particle size = 3 μm) conducted in a gradient elution procedure using 0.5% formic acid (FA) in ACN and 0.5% FA in water as the mobile phase pumped at a flow rate of 0.3 mL/min. Detection was carried out under positive electrospray ionization (ESI+) conditions in parallel reaction monitoring (PRM) mode with observation of m/z 804.5580 > 577.4056 for lekethromycin and 777.5471 > 619.4522 for gamithromycin (internal standard, IS). The linear range was 5-1000 ng/mL (r2 > 0.99), and the lower limit of quantification (LLOQ) was 5 ng/mL. The intra- and inter-day precision (expressed as relative standard deviation, RSD) values were ≤7.3% and ≤6.3%, respectively, and the accuracy was ≥90% ± 5.3%. The mean extraction recovery RSD valWeue was less then 5.1%. Matrix effects and dilution integrity RSD values were less then 5.6% and less then 3.2%, respectively. Lekethromycin was deemed stable under certain storage conditions. This fully validated method was effectively applied to study the pharmacokinetics of lekethromycin after a single intravenous administration of 5 mg/kg in rats. The main pharmacokinetic parameters were T1/2λz, CL_obs and VZ_obs were 32.33 ± 14.63 h, 0.58 ± 0.17 L/h/kg and 25.56 ± 7.93 L/kg, respectively.Recently proposed methods of bacteria identification in optical biosensors based on the phenomenon of light diffraction on macro-colonies offer over 98% classification accuracy. However, such high accuracy relies on the comparable and repeatable spatial intensity distribution of diffraction patterns. Therefore, it is essential to eliminate all non-species/strain-dependent factors affecting the diffraction patterns. In this study, the impact of the bacterial colony and illuminating beam misalignment on the variation of classification features extracted from diffraction patterns was examined. It was demonstrated that misalignment introduced by the scanning module significantly affected diffraction patterns and extracted classification features used for bacteria identification. Therefore, it is a crucial system-dependent factor limiting the identification accuracy. The acceptable misalignment level, when the accuracy and quality of the classification features are not affected, was determined as no greater than 50 µm. Obtained results led to development of image-processing algorithms for determination of the direction of misalignment and concurrent alignment of the bacterial colonies' diffraction patterns. The proposed algorithms enable the rigorous monitoring and controlling of the measurement's conditions in order to preserve the high accuracy of bacteria identification.The chili pepper (Capsicum annuum L.) is a food source that is rich in flavonoids such as luteolin and apigenin. Flavonoids are known to have anti-inflammatory and antioxidant activities; however, studies on the flavonoids composition identified and the anti-inflammatory and antioxidant effects in pepper leaves (PL) and fruits (PF) are insufficient. In the present study, we investigated the antioxidant and anti-inflammatory effects in vitro, and the flavonoids contents of the PL and PF. Pepper extracts showed radical scavenging activities and ameliorated the lipopolysaccharide (LPS)-stimulated inflammatory response by decreasing nitric oxide production and interluekin-6 and tumor necrosis factor alpha levels in RAW 264.7 cells, with more effective activities noted for PL than for PF. Furthermore, PL extracts markedly inhibited the LPS-induced production of reactive oxygen species accumulation. The flavonoid profile and content of pepper were dependent on the part, with PL showing higher total flavonoids than PF. In particular, the content of luteolin glycosides in PL was twice that in PF. Thus, PL may be useful to prevent oxidative stress and inflammation-related diseases.Food-handling behaviors and risk perceptions among primary food handlers were investigated by consumer surveys from different subjects in 2010 (N = 609; 1st survey will be called here "Year 2010") and 2019 (N = 605; 2nd survey will be called here "Year 2019"). Year 2010 was characterized by consumers' risk perception-behavior gap (i.e., consumers knew safe methods for food-handling, but responses regarding the behaviors did not support their confidence in food safety) they 1) did not wash/trim foods before storage, 2) thawed frozen foods at room temperature, and 3) exposed leftovers to danger zone temperatures. These trends were not improved and the gaps in Year 2010 remained in Year 2019. Year 2010 was also characterized by other common high-risk behaviors improved during 8 years for the following aspects 1) 70.0% of consumers divided a large portion of food into smaller pieces for storage, but few consumers (12.5%) labeled divided foods with relevant information, and 2) they excessively reused kitchen utensils. Whereas in Year 2019, more consumers (25.7%) labeled food and usage periods for kitchen utensils were shortened. Consumers usually conformed to food safety rules in both Year 2010 and 2019 1) separate storage of foods, 2) storage of foods in the proper places/periods, 3) washing fruits/vegetables before eating, 4) washing hands after handling potentially hazardous foods, and 5) cooking foods and reheating leftovers to eat. Our findings provided resources for understanding consumers' high-risk behaviors/perceptions at home, highlighting the importance of behavioral control.Environmental resistance is an important factor for understanding the epidemiology of leptospirosis. Recently, new Leptospira hosts were identified, including also marine mammals. Moreover, halotolerant Leptospira strain, isolated from the environment and animals, highlighted the capability of this microorganism to persist in the seawater. The aim of this research was to investigate the bacteriostatic and bactericidal effect of salt on Leptospira strains belonging to 16 different serovars. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were verified through the microdilutions method starting from a 20% sodium chloride concentration. MIC values obtained were between 0.3125% and 10% of salt, while MBC values between 0.625% and >20%. Icterohaemorrhagiae (MIC 0.3125%; MBC 0.625%) resulted the most inhibited serovar, while the most resistant was Tarassovi (MIC 10%; MBC >20%). Interestingly, trends were reported for Pomona (MIC 1.25%; MBC >20%) and Bratislava (MIC 0.625%; MBC 20%), highlighting low MIC values but high MBC values. This is the first investigation aimed at the in vitro effect of salt on the growth of Leptospira spp. reference strains.Protein-tyrosine phosphatase 1B (PTP1B) has been considered as a promising target for treating insulin resistance. In searching for naturally occurring PTB1B antagonists, two new pimarane diterpenoids, named 2α-hydroxy-7-oxo-pimara-8(9),15-diene (1) and 19-hydroxy-2α-acetoxy-7-oxo-pimara-8(9),15-diene (2), were isolated from the seeds of Caesalpinia minax. Their structures were determined by extensive analysis of NMR and HR-ESIMS data, and their absolute configurations were determined by electronic circular dichroism (ECD) spectra. Compound 1 was disclosed as a competitive inhibitor of PTP1B with an IC50 (the half-maximal inhibitory concentration) value of 19.44 ± 2.39 µM and a Ki (inhibition constant) value of 13.69 ± 2.72 μM. Moreover, compound 1 dose-dependently promoted insulin-stimulated glucose uptake in C2C12 myotubes through activating insulin signaling pathway. Compound 1 might be further developed as an insulin sensitizer.Metal-Organic Framework (MOF) materials are often modified or functionalized, and then the crystal size and morphology of MOF materials are changed. In the process of preparing UiO-66 confined phosphomolybdic acid (PMA) composites (PU), the TiF4-modified PU (PMA + UiO-66) composite catalyst (TiF4-PU) was successfully synthesized by adding titanium tetrafluoride, and the catalytic desulfurization activity was excellent. Similarly, the reaction mechanism was investigated by means of infrared spectroscopy, Raman spectroscopy, XPS, and UV/Vis spectroscopy. The results show that the addition of TiF4 not only changes the appearance and color of the catalyst, but also changes the valence distribution of the elements in the catalyst. The number of oxygen vacancies in the MOF increases due to the addition of TiF4, and more electrons are transferred from the Zr-MOF to PMA to form more Mo5+, which improved the performance of oxidative desulfurization in comparison. Thus, a stronger strong metal-support interaction (SMSI) effect is observed for TiF4-modified PU catalysts. In addition, the quenching experiment of free radicals shows that ·OH radical is the main active substance in the oxidative desulfurization reaction over TiF4-PU catalyst.We present a Nuclear Magnetic Resonance (NMR) compatible platform for the automated real-time monitoring of biochemical reactions using a flow shuttling configuration. This platform requires a working sample volume of ∼11 mL and it can circulate samples with a flow rate of 28 mL/min., which makes it suitable to be used for real-time monitoring of biochemical reactions. Another advantage of the proposed low-cost platform is the high spectral resolution. As a proof of concept, we acquire 1H NMR spectra of waste orange peel, bioprocessed using Trichoderma reesei fungus, and demonstrate the real-time measurement capability of the platform. The measurement is performed over more than 60 h, with a spectrum acquired every 7 min, such that over 510 data points are collected without user intervention. The designed system offers high resolution, automation, low user intervention, and, therefore, time-efficient measurement per sample.Artificial intelligence (AI) has taken us by storm, helping us to make decisions in everything we do, even in finding our "true love" and the "significant other". While 5G promises us high-speed mobile internet, 6G pledges to support ubiquitous AI services through next-generation softwarization, heterogeneity, and configurability of networks. The work on 6G is in its infancy and requires the community to conceptualize and develop its design, implementation, deployment, and use cases. Towards this end, this paper proposes a framework for Distributed AI as a Service (DAIaaS) provisioning for Internet of Everything (IoE) and 6G environments. The AI service is "distributed" because the actual training and inference computations are divided into smaller, concurrent, computations suited to the level and capacity of resources available with cloud, fog, and edge layers. Multiple DAIaaS provisioning configurations for distributed training and inference are proposed to investigate the design choices and performance bottlenecks of DAIaaS. Specifically, we have developed three case studies (e.g., smart airport) with eight scenarios (e.g., federated learning) comprising nine applications and AI delivery models (smart surveillance, etc.) and 50 distinct sensor and software modules (e.g., object tracker). The evaluation of the case studies and the DAIaaS framework is reported in terms of end-to-end delay, network usage, energy consumption, and financial savings with recommendations to achieve higher performance. DAIaaS will facilitate standardization of distributed AI provisioning, allow developers to focus on the domain-specific details without worrying about distributed training and inference, and help systemize the mass-production of technologies for smarter environments.In this paper, the effect of the micro-electro discharge machining (EDM) milling machinability of Si3N4-TiN workpieces was investigated. The material removal rate (MRR) and tool wear rate (TWR) were analyzed in relation to discharge pulse types in order to evaluate how the different pulse shapes impact on such micro-EDM performance indicators. Voltage and current pulse waveforms were acquired during micro-EDM trials, scheduled according to a Design of Experiment (DOE); then, a pulse discrimination algorithm was used to post-process the data off-line and discriminate the pulse types as short, arc, delayed, or normal. The analysis showed that, for the considered process parameter combinations, MRR was sensitive only to normal pulses, while the other pulse types had no remarkable effect on it. On the contrary, TWR was affected by normal pulses, but the occurrence of arcs and delayed pulses induced unexpected improvements in tool wear. Those results suggest that micro-EDM manufacturing of Si3N4-TiN workpiece is relevantly different from the micro-EDM process performed on metal workpieces such as steel. Additionally, the inspection of the Si3N4-TiN micro-EDM surface, performed by SEM and EDS analyses, showed the presence of re-solidified droplets and micro-cracks, which modified the chemical composition and the consequent surface quality of the machined micro-features.A series of new oxindole-based spiro-heterocycles bearing the benzo[b]thiophene motif were synthesized via a 1,3-dipolar cycloaddition reaction and their acetylcholinesterase (AChE) inhibitory activity was evaluated. All the synthesized compounds exhibited moderate inhibitory activities against AChE, while IIc was found to be the most active analog with an IC50 value of 20,840 µM·L-1. Its molecular structure was a 5-chloro-substituted oxindole bearing benzo[b]thiophene and octahydroindole moieties. Based on molecular docking studies, IIc was strongly bound to the catalytic and peripheral anionic sites of the protein through hydrophilic, hydrophobic, and π-stacking interactions with Asp74, Trp86, Tyr124, Ser125, Glu202, Ser203, Trp236, Trp286, Phe297, Tyr337, and Tyr341. These interactions also indicated that the multiplicity of the IIc aromatic core significantly favored its activity.Pyroptosis is a type of cell death that is caspase-1 (Casp-1) dependent, which leads to a rapid cell lysis, and it is linked to the inflammasome. We recently showed that pyroptotic cell death occurs in Huntington's disease (HD). Moreover, we previously described the beneficial effects of a PARP-1 inhibitor in HD. In this study, we investigated the neuroprotective effect of Olaparib, an inhibitor of PARP-1, in the mouse model of Huntington's disease. R6/2 mice were administered Olaparib or vehicle from pre-symptomatic to late stages. Behavioral studies were performed to investigate clinical effects of the compound. Immunohistochemical and Western blotting studies were performed to evaluate neuroprotection and the impact of the compound on the pathway of neuronal death in the HD mice. Our results indicate that Olaparib administration starting from the pre-symptomatic stage of the neurodegenerative disease increased survival, ameliorated the neurological deficits, and improved clinical outcomes in neurobehavioral tests mainly by modulating the inflammasome activation. These results suggest that Olaparib, a commercially available drug already in use as an anti-neoplastic compound, exerts a neuroprotective effect and could be a useful pharmaceutical agent for Huntington's disease therapy.This systematic review evaluates the existing literature about medial tibial stress syndrome (MTSS) in novice and recreational runners. PubMed/MEDLINE, EMBASE, Web of Science, Scopus, SPORTDiscus and CINAHL databases were searched until July 2020. Studies covering risk factors, diagnostic procedures, treatment methods and time to recovery of MTSS in novice and recreational runners were selected. Eleven studies met the inclusion criteria and were included. The risk factors of MTSS are mainly intrinsic and include higher pelvic tilt in the frontal plane, peak internal rotation of the hip, navicular drop and foot pronation, among others. Computed tomography (CT) and pressure algometry may be valid instruments to corroborate the presence of this injury and confirm the diagnosis. Regarding treatment procedures, arch-support foot orthoses are able to increase contact time, normalize foot pressure distribution and similarly to shockwave therapy, reduce pain. However, it is important to take into account the biases and poor methodological quality of the included studies, more research is needed to confirm these results.Approximately one in 10 people experiencing homelessness have pets. Despite the psychosocial benefits derived from pet ownership, systemic and structural barriers can prevent this group from meeting their basic needs and exiting homelessness. A multilevel framework is proposed for improving the health and well-being of pet owners experiencing homelessness. Informed by a One Health approach, the framework identifies interventions at the policy, public, and direct service delivery levels. Policy interventions are proposed to increase the supply of pet-friendly emergency shelters, access to market rental housing and veterinary medicine, and the use of a Housing First approach. At the public level, educational interventions are needed to improve knowledge and reduce stigma about the relationship between homelessness and pet ownership. Direct service providers can support pet owners experiencing homelessness by recognizing their strengths, connecting them to community services, being aware of the risks associated with pet loss, providing harm reduction strategies, documenting animals as emotional support animals, and engaging in advocacy. By targeting policies and service approaches that exacerbate the hardships faced by pet owners experiencing homelessness, the framework is a set of deliberate actions to better support a group that is often overlooked or unaccommodated in efforts to end homelessness.Nanostructured silica (SiO2)-based materials are attractive carriers for the delivery of bioactive compounds into cells. In this study, we developed hollow submicrometric particles composed of SiO2 capsules that were separately loaded with various bioactive molecules such as dextran, proteins, and nucleic acids. The structural characterization of the reported carriers was conducted using transmission and scanning electron microscopies (TEM/SEM), confocal laser scanning microscopy (CLSM), and dynamic light scattering (DLS). Moreover, the interaction of the developed carriers with cell lines was studied using standard viability, proliferation, and uptake assays. The submicrometric SiO2-based capsules loaded with DNA plasmid encoding green fluorescence proteins (GFP) were used to transfect cell lines. The obtained results were compared with studies made with similar capsules composed of polymers and show that SiO2-based capsules provide better transfection rates on the costs of higher toxicity.Background and objectives It has been well established that the resting energy expenditure (REE) for the whole body is the sum of the REE for each organ-tissue in young and middle-aged healthy adults. Based on these previous studies, although it is speculated that sleeping energy expenditure (SEE, which has small inter-individual variability) changes with a commensurate gain or reduction in the resting metabolic rate of each organ-tissue, it is unclear whether a change in organ-tissue masses is directly attributed to the fluctuation of SEE at present. This study aimed to assess the relationship between changes in organ-tissue mass and sleeping energy expenditure (SEE) following weight change in college Sumo wrestlers. This included blood analysis, which is related to energy expenditure. Materials and Methods A total of 16 healthy male college Sumo wrestlers were recruited in this study. All measurements were obtained before and after weight change. Magnetic resonance imaging measurements were used to determine the volume of the skeletal muscle (SM), liver, and kidneys, and an indirect human calorimeter was used to determine SEE before and after weight change. Results The change in body mass and SEE ranged between -8.7~9.5 kg, and -602~388 kcal/day. Moreover, changes in SM, liver, and kidneys ranged between -3.3~3.6 kg, -0.90~0.77 kg, and -0.12~0.07 kg. The change in SEE was not significantly correlated with the change in SM or liver mass, nor with blood analyses; however, a significant relationship between the change in kidney mass and SEE was observed. Conclusions Based on our results, there is a possibility that the mass of the kidneys has an effect on the change in SEE following weight change in college Sumo wrestlers.Polyketides are a large class of structurally and functionally diverse natural products with important bioactivities. Many polyketides are synthesized by reducing type II polyketide synthases (PKSs), containing transiently interacting standalone enzymes. During synthesis, ketoreductase (KR) catalyzes regiospecific carbonyl to hydroxyl reduction, determining the product outcome, yet little is known about what drives specific KR-substrate interactions. In this study, computational approaches were used to explore KR-substrate interactions based on previously solved apo and mimic cocrystal structures. We found five key factors guiding KR-substrate binding. First, two major substrate binding motifs were identified. Second, substrate length is the key determinant of substrate binding position. Third, two key residues in chain length specificity were confirmed. Fourth, phosphorylation of substrates is critical for binding. Finally, packing/hydrophobic effects primarily determine the binding stability. The molecular bases revealed here will help further engineering of type II PKSs and directed biosynthesis of new polyketides.Pulmonary arterial hypertension (PAH) is a severe, life-threatening disease, and in some cases is caused by genetic defects. This study sought to assess the diagnostic yield of genetic testing in a Dutch cohort of 126 PAH patients. Historically, genetic testing in the Netherlands consisted of the analysis of BMPR2 and SMAD9. These genes were analyzed in 70 of the 126 patients. A (likely) pathogenic (LP/P) variant was detected in 22 (31%) of them. After the identification of additional PAH associated genes, a next generation sequencing (NGS) panel consisting of 19 genes was developed in 2018. Additional genetic testing was offered to the 48 BMPR2 and SMAD9 negative patients, out of which 28 opted for NGS analysis. In addition, this gene panel was analyzed in 56 newly identified idiopathic (IPAH) or pulmonary veno occlusive disease (PVOD) patients. In these 84 patients, NGS panel testing revealed LP/P variants in BMPR2 (N = 4), GDF2 (N = 2), EIF2AK4 (N = 1), and TBX4 (N = 3). Furthermore, 134 relatives of 32 probands with a LP/P variant were tested, yielding 41 carriers. NGS panel screening offered to IPAH/PVOD patients led to the identification of LP/P variants in GDF2, EIF2AK4, and TBX4 in six additional patients. The identification of LP/P variants in patients allows for screening of at-risk relatives, enabling the early identification of PAH.In recent years, machine vision algorithms have played an influential role as core technologies in several practical applications, such as surveillance, autonomous driving, and object recognition/localization. However, as almost all such algorithms are applicable to clear weather conditions, their performance is severely affected by any atmospheric turbidity. Several image visibility restoration algorithms have been proposed to address this issue, and they have proven to be a highly efficient solution. This paper proposes a novel method to recover clear images from degraded ones. To this end, the proposed algorithm uses a supervised machine learning-based technique to estimate the pixel-wise extinction coefficients of the transmission medium and a novel compensation scheme to rectify the post-dehazing false enlargement of white objects. Also, a corresponding hardware accelerator implemented on a Field Programmable Gate Array chip is in order for facilitating real-time processing, a critical requirement of practical camera-based systems. Experimental results on both synthetic and real image datasets verified the proposed method's superiority over existing benchmark approaches. Furthermore, the hardware synthesis results revealed that the accelerator exhibits a processing rate of nearly 271.67 Mpixel/s, enabling it to process 4K videos at 30.7 frames per second in real time.

Autoři článku: Kumarwade9718 (Stokes Cameron)