Kronborgthygesen8999
individuals with Apoc3-induced hyperlipidemia was due to the increased fatty acid oxidation in NK cells and the bystander suppression caused by lipid-laden DCs. The dual recovery function of NK cells and DCs would improve the prognosis of patients with metabolic syndrome.
The etiology of food allergy is poorly understood; mouse models are powerful systems to discover immunologic pathways driving allergic disease. C3H/HeJ mice are a widely used model for the study of peanut allergy because, unlike C57BL/6 or BALB/c mice, they are highly susceptible to oral anaphylaxis. However, the immunologic mechanism of this strain's susceptibility is not known.
We aimed to determine the mechanism underlying the unique susceptibility to anaphylaxis in C3H/HeJ mice. We tested the role of deleterious Toll-like receptor 4 (Tlr4) or dedicator of cytokinesis 8 (Dock8) mutations in this strain because both genes have been associated with food allergy.
We generated C3H/HeJ mice with corrected Dock8 or Tlr4 alleles and sensitized and challenged them with peanut. We then characterized the antibody response to sensitization, anaphylaxis response to both oral and systemic peanut challenge, gut microbiome, and biomarkers of gut permeability.
In contrast to C3H/HeJ mice, C57BL/6 mice were resistant to anaphylaxis after oral peanut challenge; however, both strains undergo anaphylaxis with intraperitoneal challenge. Restoring Tlr4 or Dock8 function in C3H/HeJ mice did not protect from anaphylaxis. Instead, we discovered enhanced gut permeability resulting in ingested allergens in the bloodstream in C3H/HeJ mice compared to C57BL/6 mice, which correlated with an increased number of goblet cells in the small intestine.
Our work highlights the potential importance of gut permeability in driving anaphylaxis to ingested food allergens; it also indicates that genetic loci outside of Tlr4 and Dock8 are responsible for the oral anaphylactic susceptibility of C3H/HeJ mice.
Our work highlights the potential importance of gut permeability in driving anaphylaxis to ingested food allergens; it also indicates that genetic loci outside of Tlr4 and Dock8 are responsible for the oral anaphylactic susceptibility of C3H/HeJ mice.
Binding IgE to a cognate allergen causes aggregation of Fcε receptor I (FcεRI) in mast cells, resulting in activation of receptor-associated Src family tyrosine kinases, including Lyn and Syk. Protein tyrosine phosphatase, receptor type C (PTPRC), also known as CD45, has emerged as a positive regulator of FcεRI signaling by dephosphorylation of the inhibitory tyrosine of Lyn.
Sirtuin 6 (Sirt6), a NAD
-dependent deacetylase, exhibits an anti-inflammatory property. It remains to be determined, however, whether Sirt6 attenuates mast cell-associated diseases, including anaphylaxis.
FcεRI signaling and mast cell degranulation were measured after IgE cross-linking in murine bone marrow-derived mast cells (BMMCs) and human cord blood-derived mast cells. To investigate the function of Sirt6 in mast cell activation invivo, we used mast cell-dependent animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA).
Sirt6-deficient BMMCs augmented IgE-FcεRI-mediated signaling and deg.Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease which seriously threatens young children's health and lives. However, there is no effective therapy currently available for treating these infections. Therefore, effective drugs to prevent and treat EV-A71 infections are urgently needed. Here, we identified Mulberroside C potently against the proliferation of EV-A71. The in-vitro anti-EV-A71 activity of Mulberroside C was assessed by cytopathic effect inhibition and viral plaque reduction assays, and the results showed that Mulberroside C significantly inhibited EV-A71 infection. The downstream assays affirmed that Mulberroside C inhibited viral protein and RNA synthesis. Furthermore, Mulberroside C effectively reduced clinical symptoms in EV-A71 infected mice and reduced mortality at higher concentrations. The mechanism study indicated that Mulberroside C bound to the hydrophobic pocket of viral capsid protein VP1, thereby preventing viral uncoating and genome release. Taken together, our study indicated that Mulberroside C could be a promising EV-A71 inhibitor and worth extensive preclinical investigation as a lead compound.In this research with the effect of radioactive granite gamma radiation, the reduction of aflatoxin B1 in pistachios was examined in three steps. In the first step, the aflatoxin reduction in small packets by granite bed was tested. In this step, the aflatoxin level of 300 g pistachios packets was reduced up to 81.3 ± 1.5 percent by 4 kg granite bed after 4 days. After observation of aflatoxin reduction by granite bed, the second step was done with increasing the granite and pistachio mass and irradiation time. In this step, the aflatoxin level of 1 kg pistachios was reduced up to 4949 ± 2.6 percent by 6 kg granite after 9 days. According to the results, the aflatoxin reduction of 1 kg pistachios by 1 kg granite after 1 days (as aflatoxin Reduction Coefficient (ARC)) was calculated as ARC = 0.0090 ± 0.0025 (kg. day)-1. The aflatoxin types of detected in this research were B1 and B2 types that AFB2 level was much less than one. Therefore the effect of granite irradiation on AFB2 reduction wasn't considered. The final step was designed for testing the aflatoxin Reduction Coefficient (ARC). This step was shown that the confidence level between practical result and aflatoxin Reduction Coefficient (ARC) result is about 97 percent. The results indicated that the level of fat and protein of pistachios by granite gamma radiation did not change after 9 days. Therefore the granite irradiation can be used for aflatoxin reduction of pistachios.Trichloroethene (TCE), a widely used industrial solvent, is associated with the development of autoimmune diseases (ADs), including systemic lupus erythematosus and autoimmune hepatitis. mTOR activator Increasing evidence support a linkage between altered gut microbiome composition and the onset of ADs. However, it is not clear how gut microbiome contributes to TCE-mediated autoimmunity, and initial triggers for microbiome-host interactions leading to systemic autoimmune responses remain unknown. To achieve this, female MRL+/+ mice were treated with 0.5 mg/ml TCE for 52 weeks and fecal samples were subjected to 16S rRNA sequencing to determine the microbiome composition. TCE exposure resulted in distinct bacterial community revealed by β-diversity analysis. Notably, we observed reduction in Lactobacillaceae, Rikenellaceae and Bifidobacteriaceae families, and enrichment of Akkermansiaceae and Lachnospiraceae families after TCE exposure. We also observed significantly increased colonic oxidative stress and inflammatory markers (CD14 and IL-1β), and decreased tight junction proteins (ZO-2, occludin and claudin-3). These changes were associated with increases in serum antinuclear and anti-smooth muscle antibodies and cytokines (IL-6 and IL-12), together with increased PD1 + CD4+ T cells in TCE-exposed spleen and liver tissues. Importantly, fecal microbiota transplantation (FMT) using feces from TCE-treated mice to antibiotics-treated mice induced increased anti-dsDNA antibodies and hepatic CD4+ T cell infiltration in the recipient mice. Our studies thus delineate how imbalance in gut microbiome and mucosal redox status together with gut inflammatory response and permeability changes could be the key factors in contributing to TCE-mediated ADs. Furthermore, FMT studies provide a solid support to a causal role of microbiome in TCE-mediated autoimmunity.
Gold nanoparticles (AuNPs) have been attracted interests in the various areas of clinical therapeutics. In this study, we investigated the anticancer and antiviral potential activity of AuNPs against influenza A virus and human glioblastoma (GMB) U-87 and U-251 cell lines.
Gold nanoparticles (AuNPs) were synthesized by citrate reduction method. Then, ultraviolet-visible spectrophotometry (UV-vis spectra) and electron microscopy analysis confirmed the type, size (mean diameter of 17 nm) and distribution of the particles. The AuNPs in vitro antiviral and anticancer effects was evaluated by hemagglutination inhibition (HAI), tissue culture infectious dose 50 (TCID
), real-time PCR, MTT, flow cytometry, and scratch assays.
The AuNPs were synthesized in spherical with a mean diameter of 17 ± 2 nm and an absorbance peak at 520 nm. The AuNPs were well tolerable by MDCK cells at concentrations up to 0.5 μg/ml and they significantly inhibited the hemagglutination and virus infectivity, particularly when added pre- or during virus infection. Furthermore, anticancer results indicated that AuNPs treatment caused the marked induction of apoptosis and reduced growth and migration capability of U-87 and U-251 cell lines in a time-dependent manner.
The present results suggest that AuNPs provide promising antiviral and anticancer approaches. Further research is needed to fully elucidate the mode of antiviral and anticancer action of AuNPs against influenza virus infection and human glioblastoma cell lines.
The present results suggest that AuNPs provide promising antiviral and anticancer approaches. Further research is needed to fully elucidate the mode of antiviral and anticancer action of AuNPs against influenza virus infection and human glioblastoma cell lines.Hepatotoxicity is the main adverse effect of methotrexate (MTX), which limits its clinical use and effectiveness. Both empagliflozin (EMPA) and neohesperidin dihydrochalcone (NHD) have promising criteria for suppressing oxidative stress, inflammation and apoptosis. In this current study, we suggested that EMPA and NHD exhibit protective effects against MTX-triggered liver injury, considering N-acetylcysteine (NAC) as a reference standard. In order to inspect our suggestion, An experimental rat model comprising 70 male adult rats (7 groups, 10 rats in each) was implemented to investigate the effects of MTX (20 mg/kg, i.p. once), alone or with EMPA (10 and 30 mg/kg/day, p.o.), NHD (40 and 80 mg/kg/day, p.o.), and NAC (150 mg/kg/day, p.o.) compared to the normal control animals (1%CMC, p.o.). Pre-treatment with EMPA and NHD showed significant attenuation in liver function abnormalities, pathological tissue deteriorations, hepatic oxidative stress parameters, and the level of expression of pro-inflammatory cytokines TNF-α and IL-6. Also, EMPA and NHD showed significant decreases in NF-κB/Keap1/HSP70/caspase-3 and increases in Nrf2/PPARγ/HO-1 expression levels. In addition, EMPA and NHD showed a marked enhancement of the anti-tumour activity of MTX against HepG2 and lung (A549) cancer cells. This research reveals that both EMPA and NHD can inhibit oxidation, inflammatory reactions, and apoptosis in the liver tissues of MTX-treated rats, mainly through Nrf2/PPARγ/HO-1 signalling initiation and suppression of NF-κB/Keap1/HSP70/caspase-3 axis, considered a unique class of drugs that attenuates or at least delays the onset of MTX-induced toxicity and serves as an innovative therapeutic target for future clinical application in humans.