Kristoffersenhsu2483
Digital twins (DTs) technology has recently gained attention within the research community due to its potential to help build sustainable smart cities. However, there is a gap in the literature currently no unified model for city services has been proposed that can guarantee interoperability across cities, capture each city's unique characteristics, and act as a base for modeling digital twins. This research aims to fill that gap. In this work, we propose the DT-DNA model in which we design a city services digital twin, with the goal of reflecting the real state of development of a city's services towards enhancing its citizens' quality of life (QoL). As it was designed using ISO 37120, one of the leading international standards for city services, the model guarantees interoperability and allows for easy comparison of services within and across cities. In order to test our model, we built DT-DNA sequences of services in both Quebec City and Boston and then used a DNA alignment tool to determine the matching percentage between them. GDC-1971 solubility dmso Results show that the DT-DNA sequences of services in both cities are 46.5% identical. Ground truth comparisons show a similar result, which provides a preliminary proof-of-concept for the applicability of the proposed model and framework. These results also imply that one city performs better than the other. Therefore, we propose an algorithm to compare cities based on the proposed DT-DNA and, using Boston and Quebec City as a case study, demonstrate that Boston has better services towards enhancing QoL for its citizens.
to assess the effect of photobiomodulation (PBM) on human gingival fibroblast proliferation.
The study was conducted using the primary cell cultures of human fibroblasts collected from systemically healthy donors. Three different laser types, NdYAG (1064 nm), infrared diode laser (980 nm), and prototype led laser emitting 405, 450, and 635 nm were used to irradiate the fibroblasts. Due to the patented structure of that laser, it was possible to irradiate fibroblasts with a beam combining two or three wavelengths. The energy density was 3 J/cm
, 25 J/cm
, 64 J/cm
. The viability and proliferation of cells were determined using the (Thiazolyl Blue Tetrazolium Blue) (MTT) test conducted 24, 48, and 72 h after laser irradiation.
The highest percentage of mitochondrial activity (MA = 122.1%) was observed in the group irradiated with the 635 nm laser, with an energy density of 64 J/cm
after 48 h. The lowest percentage of MA (94.0%) was observed in the group simultaneously irradiated with three wavelengths (405 + 450 + 635 nm). The use of the 405 nm laser at 25 J/cm
gave similar results to the 635 nm laser.
The application of the 635 nm and 405 nm irradiation caused a statistically significant increase in the proliferation of gingival fibroblasts.
The application of the 635 nm and 405 nm irradiation caused a statistically significant increase in the proliferation of gingival fibroblasts.Particulate matter (PM) and airborne viruses bring adverse influence on human health. link2 As the most feasible way to prevent inhalation of these pollutants, face masks with excellent filtration efficiency and low press drop are in urgent demand. In this study, we report a novel methodology for producing high performance air filter by combining melt blown technique with corona charging treatment. Changing the crystal structure of polypropylene by adding magnesium stearate can avoid charge escape and ensure the stability of filtration performances. Particularly, the influence of fiber diameter, pore size, porosity, and charge storage on the filtration performances of the filter are thoroughly investigated. The filtration performances of the materials, including the loading test performance are also studied. The melt blown materials formed by four layers presented a significant filtration efficiency of 97.96%, a low pressure drop of 84.28 Pa, and a high quality factor (QF) of 0.046 Pa-1 for paraffin oil aerosol particles. Meanwhile, a robust filtration efficiency of 99.03%, a low pressure drop of 82.32 Pa, and an excellent QF of 0.056 Pa-1 for NaCl aerosol particles could be easily achieved. The multi-layered melt blown filtration material developed here would be potentially applied in the field of protective masks.The effects of in-bag dielectric barrier discharge high voltage cold plasma (IB-DBD-HVCP) on myofibrillar protein isolate (MPI) from Asian sea bass (ASB) and its impact on the physiochemical and gelling properties of MPI gels were elucidated. A mixture of argon (90%) and oxygen (10%) was used for generating IB-DBD-HVCP. MPI was subjected to IB-DBD-HVCP for varying times (5-15 min). Total carbonyl content was increased, while total sulfhydryl content was decreased in MPI, especially with augmenting treatment time (TT) (p less then 0.05). Surface hydrophobicity initially increased when IB-DBD-HVCP TT of 5 min (DBD-HVCP5) was implemented, followed by subsequent decrease with increasing TT. Based on gel electrophoresis, lower actin and myosin heavy chain (MHC) band intensities were found for MPI subjected to IB-DBD-HVCP, particularly when a TT longer than 10 min was used, compared to those of the control. Gel made from DBD-HVCP5 had higher breaking force, deformation, and highest G' value compared to others. A more ordered and fibrous network was found in DBD-HVCP5 treated gel. Therefore, IB-DBD-HVCP treatment, particularly for 5 min, enhanced cross-linking of proteins in ASB myofibrillar proteins, which resulted in the improved gel elasticity and strength.We investigated whether bicarbonate ion (HCO3-) in a carbohydrate-electrolyte solution (CE+HCO3) ingested during climbing to 3000 m on Mount Fuji could increase urine HCO3- retention. This study was a randomized, controlled pilot study. Sixteen healthy lowlander adults were divided into two groups (six males and two females for each) a tap water (TW) group (0 kcal with no energy) and a CE+HCO3 group. The allocation to TW or CE+HCO3 was double blind. The CE solution contains 10 kcal energy, including Na+ (115 mg), K+ (78 mg), HCO3- (51 mg) per 100 mL. After collecting baseline urine and measuring body weight, participants started climbing while energy expenditure (EE) and heart rate (HR) were recorded every min with a portable calorimeter. After reaching a hut at approximately 3000 m, we collected urine and measured body weight again. The HCO3- balance during climbing, measured by subtracting the amount of urine excreted from the amount of fluid ingested, was -0.37 ± 0.77 mmol in the CE+HCO3, which was significantly higher than in the TW (-2.23 ± 0.96 mmol, p less then 0.001). These results indicate that CE containing HCO3- supplementation may increase the bicarbonate buffering system during mountain trekking up to ~3000 m, suggesting a useful solution, at least, in the population of the present study on Mount Fuji.Wearable technology will become available and allow prolonged electroencephalography (EEG) monitoring in the home environment of patients with epilepsy. Neurologists analyse the EEG visually and annotate all seizures, which patients often under-report. Visual analysis of a 24-h EEG recording typically takes one to two hours. Reliable automated seizure detection algorithms will be crucial to reduce this analysis. We investigated such algorithms on a dataset of behind-the-ear EEG measurements. link3 Our first aim was to develop a methodology where part of the data is deferred to a human expert, who performs perfectly, with the goal of obtaining an (almost) perfect detection sensitivity (DS). Prediction confidences are determined by temperature scaling of the classification model outputs and trust scores. A DS of approximately 90% (99%) can be achieved when deferring around 10% (40%) of the data. Perfect DS can be achieved when deferring 50% of the data. Our second contribution demonstrates that a common modelling strategy, where predictions from several short EEG segments are combined to obtain a final prediction, can be improved by filtering out untrustworthy segments with low trust scores. The false detection rate shows a relative decrease between 21% and 43%, and the DS shows a small increase or decrease.Major advances in cancer control can be greatly aided by early diagnosis and effective treatment in its pre-invasive state. Lung cancer (small cell and non-small cell) is a leading cause of cancer-related deaths among both men and women around the world. A lot of research attention has been directed toward diagnosing and treating lung cancer. A common method of lung cancer treatment is based on COX-2 (cyclooxygenase-2) inhibitors. This is because COX-2 is commonly overexpressed in lung cancer and also the abundance of its enzymatic product prostaglandin E2 (PGE2). Instead of using traditional COX-2 inhibitors to treat lung cancer, here, we introduce a new anti-cancer strategy recently developed for lung cancer treatment. It adopts more abundant omega-6 (ω-6) fatty acids such as dihomo-γ-linolenic acid (DGLA) in the daily diet and the commonly high levels of COX-2 expressed in lung cancer to promote the formation of 8-hydroxyoctanoic acid (8-HOA) through a new delta-5-desaturase (D5Di) inhibitor. The D5Di doeshe Ti3C2 MXene-based sensor selectively adsorb 8-HOA molecules through effective charge transfer and lead to a measurable change in the conductivity of the material with a high signal-to-noise ratio and excellent sensitivity.Our previous study indicated that a high amount of visceral adipose tissue was associated with poor survival outcomes in patients with early breast cancer who received neoadjuvant chemotherapy. However, inconsistency was observed in the prognostic role of body composition in breast cancer treatment outcomes. In the present study, we aimed to validate our previous research by performing a comprehensive body composition analysis in patients with a standardized clinical background. We included 198 patients with stage III breast cancer who underwent neoadjuvant chemotherapy between January 2007 and June 2015. The impact of body composition on pathologic complete response and survival outcomes was determined. Body composition measurements had no significant effect on pathologic complete response. Survival analysis showed a low ratio of total visceral adipose tissue to subcutaneous adipose tissue (V/S ratio ≤ 34) was associated with shorter overall survival. A changepoint method determined that a V/S ratio cutoff of 34 maximized the difference in overall survival. Our study indicated the prognostic effect of body composition measurements in patients with locally advanced breast cancer compared to those with early breast cancer. Further investigation will be needed to clarify the biological mechanism underlying the association of V/S ratio with prognosis in locally advanced breast cancer.Some of the most common and debilitating conditions are metabolic disorders (metabolic syndrome and non-alcoholic fatty liver disease) and depression. These conditions are also exacerbated by the fact that they often co-occur. Although the exact mechanisms underlying such relationships are poorly known, antipsychotic medication and antidepressant use, diet and physical activity, and lifestyle factors are believed to play a role; however, their high co-occurrence rate suggests a possible pathophysiological overlap. This paper reviews several possible bases for this overlap, including hypothalamic-pituitary-adrenal axis dysregulation, immune alterations with chronic inflammation, and oxidative stress. While it is entirely possible that changes in the microbiota may play a role in each of them, interventions based on the implementation of dietary and other lifestyle changes, supplementation with prebiotics or probiotics and faecal microbiota transplantation have failed to achieve conclusive results. A better characterization of the above associations may allow a more targeted approach to the treatment of both depressive and metabolic disorders.