Krebserickson2616
Two model porphyrin metal-organic frameworks were used for the incorporation of Rh(i) species by a post-synthetic metallation under mild conditions. As a result, new rhodium MOFs (Rh/MOFs), Rh/PCN-222 and Rh/NU-1102, were synthesized and structurally characterized. To illustrate the potential of this catalytic platform, we use Rh/MOFs as phosphine-free heterogeneous catalysts in the hydrogenation of unsaturated hydrocarbons under mild reaction conditions (30 °C and 1 atm H2). Fadraciclib price We found that for our Rh/MOFs an activation step is required during the first run of the catalytic process. The presence of Rh-CO moieties allowed us to monitor the activation pathway of the catalyst under a H2 atmosphere, by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). After activation, the catalyst remains highly active during the subsequent catalytic cycles. This simple post-synthetic modification approach presents new possibilities for the utilization of Rh-based catalytic systems with robust porphyrin-based MOFs as supports.This contribution is focused on bismuth species in the coordination sphere of transition metals. In molecular transition metal complexes, three types of Bi-M bonding are considered, namely dative Bi→M interactions (with Bi acting as a donor), dative Bi←M interactions (with Bi acting as an acceptor) and covalent Bi-M interactions (M = transition metal). Synthetic routes to all three classes of compounds are outlined, the Bi-M bonding situation is discussed, trends in the geometric parameters and in the coordination chemistry of the compounds are addressed, and common spectroscopic properties are summarized. As an important part of this contribution, the reactivity of bismuth species in the coordination sphere of transition metal complexes in stoichiometric and catalytic reactions is highlighted.Polymer vesicles that mimic the function of cell membranes can be obtained through the self-assembly of amphiphilic block copolymers. The cell-like characteristics of polymer vesicles, such as the core-shell structure, semi-permeability and tunable surface chemistry make them excellent building blocks for artificial cells. However, the standard preparation methods for polymer vesicles can be time consuming, require special equipment, or have low encapsulation efficiency for large components, such as nanomaterials and proteins. Here, we introduce a new encapsulation strategy based on a simple double emulsification (SDE) approach which allows giant polymer vesicles to be formed in a short time and with basic laboratory equipment. The SDE method requires a single low molecular weight block copolymer that has the dual role of macromolecular surfactant and membrane building block. Giant polymer vesicles with diameters between 20-50 μm were produced, which allowed proteins and nanoparticles to be encapsulated. To demonstrate its practical application, we used the SDE method to assemble a simple artificial cell that mimics a two-step enzymatic cascade reaction. The SDE method described here introduces a new tool for simple and rapid fabrication of synthetic compartments.Inertial microfluidics is a simple, low cost, efficient size-based separation technique which is being widely investigated for rare-cell isolation and detection. Due to the fixed geometrical dimensions of the current rigid inertial microfluidic systems, most of them are only capable of isolating and separating cells with certain types and sizes. Herein, we report the design, fabrication, and validation of a stretchable inertial microfluidic device with a tuneable separation threshold that can be used for heterogenous mixtures of particles and cells. Stretchability allows for the fine-tuning of the critical sorting size, resulting in a high separation resolution that makes the separation of cells with small size differences possible. We validated the tunability of the separation threshold by stretching the length of a microchannel to separate the particle sizes of interest. We also evaluated the focusing efficiency, flow behaviour, and the positions of cancer cells and white blood cells (WBCs) in an elongated channel, separately. In addition, the performance of the device was verified by isolating cancer cells from WBCs which revealed a high recovery rate and purity. The stretchable chip showed promising results in the separation of cells with comparable sizes. Further validation of the chip using whole blood spiked with cancer cells delivered a 98.6% recovery rate with 90% purity. Elongating a stretchable microfluidic chip enables onsite modification of the dimensions of a microchannel leading to a precise tunability of the separation threshold as well as a high separation resolution.Engineered three-dimensional models of neuromuscular tissues are promising for use in mimicking their disorder states in vitro. Although several models have been developed, it is still challenging to mimic the physically separated structures of motor neurons (MNs) and skeletal muscle (SkM) fibers in the motor units in vivo. In this study, we aimed to develop microdevices for precisely compartmentalized coculturing of MNs and engineered SkM tissues. The developed microdevices, which fit a well of 24 well plates, had a chamber for MNs and chamber for SkM tissues. The two chambers were connected by microtunnels for axons, permissive to axons but not to cell bodies. Human iPSC (hiPSC)-derived MN spheroids in one chamber elongated their axons into microtunnels, which reached the tissue-engineered human SkM in the SkM chamber, and formed functional neuromuscular junctions with the muscle fibers. The cocultured SkM tissues with MNs on the device contracted spontaneously in response to spontaneous firing of MNs. The addition of a neurotransmitter, glutamate, into the MN chamber induced contraction of the cocultured SkM tissues. Selective addition of tetrodotoxin or vecuronium bromide into either chamber induced SkM tissue relaxation, which could be explained by the inhibitory mechanisms. We also demonstrated the application of chemical or mechanical stimuli to the middle of the axons of cocultured tissues on the device. Thus, compartmentalized neuromuscular tissue models fabricated on the device could be used for phenotypic screening to evaluate the cellular type specific efficacy of drug candidates and would be a useful tool in fundamental research and drug development for neuromuscular disorders.