Kragelundross0554

Z Iurium Wiki

gibsoni and the complicated form of B. canis infection. In conclusion, the obtained results suggest differences in the changes of serum protein electrophoretic pattern between dogs infected with both Babesia species and thus, in the response to the infection caused by various Babesia parasites.Powdery mildew, a common cereal disease caused by the fungus Blumeria graminis, is a major limiting factor of barley production and genetic resistance is the most appropriate protection against it. To aid the breeding of new cultivars and their marketing, resistance genes can be postulated in homogeneous accessions. Although hybrid cultivars (F1) should be homogeneous, they are often not genetically uniform, especially if more than two genotypes are involved in their seed production or due to undesirable self-pollination, out-crossing and mechanical admixtures. To overcome these problems the accepted method of postulating specific resistance genes based on comparing response type arrays (RTAs) of genetically homogeneous cultivars with RTAs of standard genotypes was substituted by analysing the frequency of response types to clusters of pathogen isolates in segregating F2 generations. This method combines a genetic and phytopathological approach for identifying resistance genes. To assess its applicability six hybrid cultivars were screened and from three to seven with a total of 14 resistance genes were found. Two genes were newly located at the Mla locus and their heritability determined. In addition, three unknown dominant genes were detected. This novel, comprehensive and efficient method to identifying resistance genes in hybrid cultivars can also be applied in other cereals and crops.The weighted gene co-expression network analysis (WGCNA) has been used to explore gene expression datasets by constructing biological networks based on the likelihood expression profile among genes. In recent years, WGCNA found application in biomarker discovery studies, including miRNA. Serum samples from 20 patients with hepatocellular carcinoma (HCC) were profiled through miRNA 3.0 gene array and miRNAs biomarker candidates were identified through WGCNA. Results were validated by qRT-PCR in 102 HCC serum samples collected at diagnosis. WGCNA identified 16 miRNA modules, nine of them were significantly associated with the clinical characteristics of the patient. The Red module had a significant negative correlation with patients Survival (- 0.59, p = 0.007) and albumin (- 0.52, p = 0.02), and a positive correlation with PCR (0.61, p = 0.004) and alpha-fetoprotein (0.51, p = 0.02). In the red module, 16 circulating miRNAs were significantly associated with patient survival. MiR-3185 and miR-4507 were identified as predictors of patient survival after the validation phase. At diagnosis, high expression of circulating miR-3185 and miR-4507 identifies patients with longer survival (HR 2.02, 95% CI 1.10-3.73, p = 0.0086, and HR of 1.75, 95% CI 1.02-3.02, p = 0.037, respectively). Thought a WGCNA we identified miR-3185 and miR-4507 as promising candidate biomarkers predicting a longer survival in HCC patients.Frequency recognition algorithm for multiple exposures (FRAME) is a single-exposure imaging technique that can be used for ultrafast videography, achieved through rapid illumination with spatially modulated laser pulses. To date, both the limit in sequence length as well as the relation between sequence length and image quality are unknown for FRAME imaging. Investigating these questions requires a flexible optical arrangement that has the capability of reaching significantly longer image sequences than currently available solutions. In this paper we present a new type of FRAME setup that fulfills this criteria. The setup relies only on (i) a diffractive optical element, (ii) an imaging lens and (iii) a digital micromirror device to generate a modulated pulse train with sequence lengths ranging from 2 to 1024 image frames. To the best of the authors' knowledge, this is the highest number of temporally resolved frames imaged in a single-exposure.Mosquito-borne diseases are a continuous challenge to public health. To prevent transmission, Integrated Vector Management (IVM) applies preventive, control, and communicational strategies that should be feasible, environmentally benign, and sustainable. IVM shows higher efficiency when being supported by local communities. Accordingly, we applied a social-ecological approach to identify the public acceptance of control measures and effectiveness of Eurocent coins containing copper, clove essential oil (EO) and Bacillus thuringiensis israelensis (Bti). We performed field and laboratory experiments to demonstrate the toxicity of alternative substances against Aedes japonicus japonicus. In expert interviews, we asked for (1) knowledge on exotic mosquitoes in Germany, (2) potential chances of alternative substances in future mosquito control, and (3) their needs for further clarification before application. We assessed potential users' (4) awareness of exotic mosquitoes and (5) willingness to apply the substances. Self-prepared copper coins and EO were clearly preferred by potential users over Bti. However, 100% mortality of the sensitive first stage could not be reached with the number of ten 5-Eurocent coins showing limited toxicity. Clove EO was shown to work as oviposition deterrent and larvicide with a LC50 of 17 mg l-1 (95% CI 15-19 mg l-1). This study shows the importance of potential users' perspectives in IVM and the need for authorised insecticides.Herpes simplex virus type-1 (HSV-1), one of the most widely spread human viruses in the Herpesviridae family, causes herpes labialis (cold sores) and keratitis (inflammation of the cornea). Conventional treatment for HSV-1 infection includes pharmaceutical drugs, such as acyclovir and docosonal, which are efficacious but maintain the potential for the development of viral drug resistance. Extracts from the carnivorous pitcher plant, Sarracenia purpurea, have previously been shown to inhibit the replication of HSV-1. In this study, we demonstrate that S. purpurea extracts can inhibit the replication of HSV-1 by two distinct mechanisms of action. These extracts directly inhibit extracellular virions or viral attachment to the human host cell as well as inhibiting the expression of viral immediate-early, early and late genes when added at various times post-infection. This botanical has previously been shown to inhibit the replication of poxviruses through the inhibition of early viral gene transcription. These results support a broader anti-viral activity of S. purpurea extracts against both pox and herpes viruses.Fluid-saturated rocks are multi-phasic materials and the mechanics of partitioning the externally applied stresses between the porous skeleton of the rock and the interstitial fluids has to take into consideration the mechanical behaviour of the phases. In these studies the porosity of the multi-phasic material is important for estimating the multi-phasic properties and most studies treat the porosity as a scalar measure without addressing the influence of pore shape and pore geometry. This paper shows that both the overall bulk modulus of a porous medium and the Biot coefficient depend on the shape of the pores. Pores with shapes resembling either thin oblate spheroids or spheres are considered. The Mori-Tanaka and the self-consistent methods are used to estimate the overall properties and the results are compared with experimental data. The pore density and the aspect ratio of the spheroidal pores influence the porosity of the geomaterials. For partially saturated rocks, the equivalent bulk modulus of the fluid-gas mixture occupying the pore space can also be obtained. The paper also examines the influence of the pore shape in estimating the Biot coefficient that controls the stress partitioning in fluid-saturated poroelastic materials.In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. EGF816 The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm.It is shown that substrate pixelisation before epitaxial growth can significantly impact the emission color of semiconductor heterostructures. The wavelength emission from InxGa1-xN/GaN quantum wells can be shifted from blue to yellow simply by reducing the mesa size from 90 × 90 µm2 to 10 × 10 µm2 of the patterned silicon used as the substrate. This color shift is mainly attributed to an increase of the quantum well thickness when the mesa size decreases. The color is also affected, in a lesser extent, by the trench width between the mesas. Cathodoluminescence hyperspectral imaging is used to map the wavelength emission of the InxGa1-xN/GaN quantum wells. Whatever the mesa size is, the wavelength emission is red-shifted at the mesa edges due to a larger quantum well thickness and In composition.While the central common feature of the neurodegenerative diseases (NDs) is the accumulation of misfolded proteins, they share other pathogenic mechanisms. However, we miss an explanation for the onset of the NDs. The mechanisms through which genetic mutations, present from conception are expressed only after several decades of life are unknown. We aim to find clues on the complexity of the disease onset trigger of the different NDs expressed in the number of steps of factors related to a disease. We collected brain autopsies on diseased patients with NDs, and found a dynamic increase of the ND multimorbidity with the advance of age. Together with the observation that the NDs accumulate multiple misfolded proteins, and the same misfolded proteins are involved in more than one ND, motivated us to propose a model for a genealogical tree of the NDs. To collect the dynamic data needed to build the tree, we used a Big-data approach that searched automatically epidemiological datasets for age-stratified incidence o a multiple steps disease.Thus far, underwater and underground positioning techniques have been limited to those using classical waves (sound waves, electromagnetic waves or their combination). However, the positioning accuracy is strongly affected by the conditions of media they propagate (temperature, salinity, density, elastic constants, opacity, etc.). In this work, we developed a precise and entirely new three-dimensional positioning technique with cosmic muons. This muonic technique is totally unaffected by the media condition and can be universally implemented anywhere on the globe without a signal transmitter. Results of our laboratory-based experiments and simulations showed that, for example, plate-tectonics-driven seafloor motion and magma-driven seamount deformation can be detected with the μPS.

Autoři článku: Kragelundross0554 (Almeida Ramsey)