Kragelundbyers8348

Z Iurium Wiki

Stable oxygen isotope (δ18O) compositions from vertebrate tooth enamel are widely used as biogeochemical proxies for paleoclimate. However, the utility of enamel oxygen isotope values for environmental reconstruction varies among species. Herein, we evaluate the use of stable oxygen isotope compositions from pronghorn (Antilocapra americana Gray, 1866) enamel for reconstructing paleoclimate seasonality, an elusive but important parameter for understanding past ecosystems. We serially sampled the lower third molars of recent adult pronghorn from Wyoming for δ18O in phosphate (δ18OPO4) and compared patterns to interpolated and measured yearly variation in environmental waters as well as from sagebrush leaves, lakes, and rivers (δ18Ow). As expected, the oxygen isotope compositions of phosphate from pronghorn enamel are enriched in 18O relative to environmental waters. FM19G11 HIF inhibitor For a more direct comparison, we converted δ18Ow values into expected δ18OPO4* values (δ18OW-PO4*). Pronghorn δ18OPO4 values from tooth enamel reccellent sources of paleoclimate proxy data.Both the Norwegian Spring Spawning herring (Clupea harengus) and the Northeast Arctic (NEA) cod (Gadus morhua) are examples of strong stock reduction and decline of the associated fisheries due to overfishing followed by a recovery. Cod and herring are both part of the Barents Sea ecosystem, which has experienced major warming events in the early (1920-1940) and late 20th century. While the collapse or near collapse of these stocks seems to be linked to an instability created by overfishing and climate, the difference of population dynamics before and after is not fully understood. In particular, it is unclear how the changes in population dynamics before and after the collapses are associated with biotic interactions. The combination of the availability of unique long-term time series for herring and cod makes it a well-suited study system to investigate the effects of collapse. We examine how species interactions may differently affect the herring and cod population dynamic before and after a collapse. Particularly we explore, using a GAM modeling approach, how herring could affect cod and vice versa. We found that the effect of cod biomass on herring that was generally positive (i.e., covariation) but the effect became negative after the collapse (i.e., predation or competition). Likewise a change occurred for the cod, the juvenile herring biomass that had no effect before the collapse had a negative effect after. Our results indicate that the population collapses may alter the inter-specific interactions and response to abiotic environmental changes. While the stocks are at similar abundance levels before and after the collapses, the system is potentially different in its functioning and may require different management action.Although females are traditionally thought of as the choosy sex, there is increasing evidence in many species that males will preferentially court or mate with certain females over others when given a choice. In the fruit fly, Drosophila melanogaster, males discriminate between potential mating partners based on a number of female traits, including species, mating history, age, and condition. Interestingly, many of these male preferences are affected by the male's previous sexual experiences, such that males increase courtship toward types of females that they have previously mated with and decrease courtship toward types of females that have previously rejected them. D. melanogaster males also show courtship and mating preferences for larger females over smaller females, likely because larger females have higher fecundity. It is unknown, however, whether this preference shows behavioral plasticity based on the male's sexual history as we see for other male preferences. Here, we manipulate the sexual experience of D. melanogaster males and test whether this manipulation has any effect on the strength of male mate choice for large females. We find that sexually inexperienced males have a robust courtship preference for large females that is unaffected by previous experience mating with, or being rejected by, females of differing sizes. Given that female body size is one of the most common targets of male mate choice across insect species, our experiments with D. melanogaster may provide insight into how these preferences develop and evolve.We investigated how the potential distribution of Histiotus velatus is affected by the addition of new records over decades (decade effect). Assuming that (1 hypothesis of the effect of the decade) the addition of new occurrence records over time increases the potential size of the species distribution; and (2 Wallacean distance hypothesis) over the years, the new points added are increasingly distant from the research centers. Considering the geographic knowledge gap of this species, our objective is to report a new record of this species and estimate its potential distribution in South America through environment niche models (ENMs). For this, we compiled records of occurrence of species, selected from 1900 to 2015. We used 19 bioclimatic variables available in the WorldClim database to estimate the potential distribution of the species, and we used three modeling algorithms Maximum Entropy (MXT), Random Forest (RDF), and Support Vector Machine. To test the Wallacean distance hypothesis, we calculated the Euclidian distance from occurrences to bat research centers in Brazil, located using a national researchers' information dataset ("Plataforma Lattes"). To test the hypothesis of the decade effect, we used the beta regression analysis, taking conservative and non-conservative approaches. The results showed that the predicted area expanded and retracted with the addition of new occurrences over the decades, with an improvement in the accuracy of models. Most records are located in the southeastern region of Brazil, but algorithms predicted areas in regions where there are no records. Only the conservative approach has had a positive relationship over the decades. The distance from new points does not increase over the years of research centers.Climate change (CC) can alter the configuration of marine ecosystems; however, ecosystem response and resilience to change are usually case-specific. The effect of CC on the demersal resources of the Aegean Sea (east Mediterranean Sea) was investigated during the past six decades applying a combination of multivariate analysis, non-additive modeling and the Integrated Resilience Assessment (IRA) framework. We focused on the study of (i) the biological "system" complex, using proxies of biomass (landings per unit of capacity) for 12 demersal taxa, and (ii) the environmental "stressor" complex, described by 12 abiotic variables. Pronounced changes have occurred in both the environmental and biological system over the studied period. The majority of the environmental stressors exhibited strikingly increasing trends (temperature, salinity, primary production indices) with values started exceeding the global historical means during late 1980s-early 1990s. It is suggested that the biological system exhibited a discontinuous response to CC, with two apparently climate-induced regime shifts occurring in the past 25 years. There is evidence for two-fold bifurcations and four tipping points in the system, forming a folded stability landscape with three basins of attraction. The shape of the stability landscape for the Aegean Sea's biological system suggests that while the initial state (1966-1991) was rather resilient to CC, absorbing two environmental step-changes, this was not the case for the two subsequent ones (intermediate 1992-2002; recent 2003-2016). Given the current trajectory of environmental change, it is highly unlikely that the biological system will ever return to its pre-1990s state, as it is entering areas of unprecedented climatic conditions and there is some evidence that the system may be even shifting toward a new state. Our approach and findings may be relevant to other marine areas of the Mediterranean and beyond, undergoing climate-driven regime shifts, and can assist to their adaptive management.The mirid bugs Stenotus rubrovittatus and Trigonotylus caelestialium, which cause pecky rice, have become a threat to rice cultivation in Asia. Damage caused by these pests has rapidly become frequent since around 2000 in Japan. Their expansion pattern is not simple, and predicting their future spread remains challenging. Some insects with wide ranges have locally adapted variations in life-history traits. We performed laboratory rearing experiments to assess the geographical scale of intraspecific variations in life-history traits of S. rubrovittatus and T. caelestialium. The experiments were aimed at increasing the accuracy of occurrence estimates and the number of generations per year. These results were compared with previous research, and differences in development rates were observed between populations of different latitudes, but not of the same latitude. Finally, plotting the timing of adult emergence and the potential number of generations per year on maps with a 5-km grid revealed that they differed greatly locally at the same latitude. These maps can be used for developing more efficient methods of managing mirid bugs in integrated pest management.Life-history studies are often conducted in a laboratory environment where it is easy to assay individual animals. However, factors such as temperature, photoperiod, and nutrition vary greatly between laboratory and field environments, making it difficult to compare results. Consequently, there is a need to study individual life histories in the field, but this is currently difficult in systems such as Daphnia where it is not possible to mark and track individual animals. Here, we present a proof of principle study showing that field cages are a reliable method for collecting individual-level life-history data in Daphnia magna. As a first step, we compared the life history of paired animals reared outside and inside cages to test the hypothesis that cages allow free flow of algal food resources. We then used a seminatural mesocosm setting to compare the performance of individual field cages versus glass jars refilled with mesocosm water each day. We found that cages did not inhibit food flow and that differences in life histories between three clones detected in the jar assays were also detectable using the much less labor-intensive field cages. We conclude that field cages are a feasible approach for collecting individual-level life-history data in systems such as Daphnia where individual animals cannot be marked and tracked.In the face of global pollinator decline, extensively managed grasslands play an important role in supporting stable pollinator communities. However, different types of extensive management may promote particular plant species and thus particular functional traits. As the functional traits of flowering plant species (e.g., flower size and shape) in a habitat help determine the identity and frequency of pollinator visitors, they can also influence the structures of plant-pollinator interaction networks (i.e., pollination networks). The aim of this study was to examine how the type of low-intensity traditional management influences plant and pollinator composition, the structure of plant-pollinator interactions, and their mediation by floral and insect functional traits. Specifically, we compared mown wooded meadows to grazed alvar pastures in western Estonia. We found that both management types fostered equal diversity of plants and pollinators, and overlapping, though still distinct, plant and pollinator compositions.

Autoři článku: Kragelundbyers8348 (Dorsey Bowden)