Korsholmsalisbury7493

Z Iurium Wiki

Inhalation is the most frequent route and the lung is the primary damaged organ for human exposure to benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS). However, there is limited information on the risk and dose-effect of the BTEXS mixture on pulmonary function, particularly the overall effect. We conducted a cross-sectional study in a petrochemical plant in southern China. Spirometry and cumulative exposure dose (CED) of BTEXS were used to measure lung function and exposure levels for 635 workers in 2020, respectively. Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were tested and interpreted as percentages to predicted values [FVC or FEV1% predicted], and FEV1 to FVC ratio [FEV1/FVC (%)]. We found the reduction in FVC% predicted and the risk of lung ventilation dysfunction (LVD) and its two subtypes (mixed and restrictive ventilation dysfunction, MVD, and MVD) were significantly associated with BTEXS individuals. In addition, pulmonary function damage associated with BTEXS was modified by the smoking status and age. Generalized weighted quantile sum (gWQS) regressions were used to estimate the overall dose-effect on lung function damage induced by the BTEXS mixture. Our results show wqs, an index of weighted quartiles for BTEXS, was potentially associated with the reduction in FVC and FEV1% predicted with the coefficients [95% confidence intervals (CI)] between -1.136 (-2.202, -0.070) and -1.230 (-2.265, -0.195). Odds ratios (ORs) and 95% CIs for the wqs index of LVD, MVD, and RVD were 1.362 (1.129, 1.594), 1.323 (1.084, 1.562), and 1.394 (1.096, 1.692), respectively. Furthermore, xylene, benzene, and toluene in the BTEXS mixture potentially contribute to the development of lung function impairment. Our novel findings demonstrated the dose-response relationships between pulmonary function impairment and the BTEXS mixture and disclosed the potential key pollutants in the BTEXS mixture.Land-use types may affect soil aggregates' stability and organic carbon (OC) distribution characteristics, but little is known about the effects on the distribution characteristics of microplastics (MPs) in the aggregates. Hence, the MPs abundance of soil aggregates and analyzed aggregates' stability, composition, and OC content from two soil layers of four land-use types in Gansu Province were investigated in this study. The total MPs abundances in woodland, farmland (wheat, maize, and potato), orchard, and intercropping (potato + apple orchard) of top and deep soils were 1383.3 and 1477.9, 1324.6 and 931.1, 1757.1 and 1930.9, 2127.2 and 1998.0, 1335.9 and 886.7, and 1777.5 and 1683.3 items kg-1, respectively. The largest MPs abundance was detected in the >5 mm fractions of topsoil in potato (3077.3 items kg-1), followed by maize (3044.7 items kg-1) and intercropping (2718.4 items kg-1). In the topsoil, the total MPs abundance increased significantly with decreasing aggregate stability, and also was positively correlated with bulk density, microbial biomass, and total nitrogen contents of bulk soil. Summarizing, the abundance distribution of MPs correlates with the soil aggregate characteristics of the different land-use types.Wastewater treatment plants (WWTPs) are considered one of the important sources of aquatic/terrestrial microplastic (MP) pollution. Therefore, the abundance and properties of MPs in the wastewater and sludge of an urban WWTP in Bursa Turkey were investigated. The amount, properties, and removal of MPs were evaluated. The results showed that the average abundance of MPs was 135.3 ± 28.0 n/L in the influent and 8.5 ± 4.7 n/L in the effluent, with a 93.7% removal rate, MP was removed and transferred to the sludge. The daily MP amount released in the aquatic environment is calculated as 525 million MPs, and the annual amount is 1.9 × 1011 MPs. The abundance of MPs in the sludge thickening and sludge filter cake is 17.9 ± 2.3 and 9.5 ± 2.3 n/g dry weight (dw), respectively. The sludge disposal amount of WWTP is 81.5 tons/day and the approximate amount of MP accumulated in the sludge per year is calculated as 2.8 × 1011 MPs. In wastewater and sludge samples, fragment dominant shape, black main colour, and 500-1000 μm sizes are the most common size. The main MP types in wastewater samples at the influent are polypropylene (PP, 36.8%), polyethylene (PE, 31.0%), polystyrene (PS, 11.8%), polyethylene terephthalate (PET, 8.0%), and polyamide (PA, 7.1%), at the effluent (PE, 33.0%), (PP, 52.5%), and (PS, 8.2%). In the sludge cake, the distribution is (PE, 40.8%), (PP, 27.6%), (PS, 18.7%) and (PET, 8.0%). The results of this study show that MPs are removed from wastewater with high efficiency by treatment processes and a significant amount accumulates in the sludge. Therefore, it is suggested that to integrate advanced treatment processes into urban WWTPs and use effective sludge disposal management practices to reduce the amount of MP released into the environment with effluent and sludge.There is a paucity of air quality data in sub-Saharan African countries to inform science driven air quality management and epidemiological studies. We investigated the use of available remote-sensing aerosol optical depth (AOD) data to develop spatially and temporally resolved models to predict daily particulate matter (PM10) concentrations across four provinces of South Africa (Gauteng, Mpumalanga, KwaZulu-Natal and Western Cape) for the year 2016 in a two-staged approach. In stage 1, a Random Forest (RF) model was used to impute Multiangle Implementation of Atmospheric Correction AOD data for days where it was missing. In stage 2, the machine learner algorithms RF, Gradient Boosting and Support Vector Regression were used to model the relationship between ground-monitored PM10 data, AOD and other spatial and temporal predictors. These were subsequently combined in an ensemble model to predict daily PM10 concentrations at 1 km × 1 km spatial resolution across the four provinces. An out-of-bag R2 of 0.96 was achieved for the first stage model. The stage 2 cross-validated (CV) ensemble model captured 0.84 variability in ground-monitored PM10 with a spatial CV R2 of 0.48 and temporal CV R2 of 0.80. The stage 2 model indicated an optimal performance of the daily predictions when aggregated to monthly and annual means. Our results suggest that a combination of remote sensing data, chemical transport model estimates and other spatiotemporal predictors has the potential to improve air quality exposure data in South Africa's major industrial provinces. In particular, the use of a combined ensemble approach was found to be useful for this area with limited availability of air pollution ground monitoring data.Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. EW-7197 Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.Little is known about the main sources of ambient particulate matter (PM) in the 22 Eastern Mediterranean Region (EMR) countries. We designed this study to systematically review all published and unpublished source apportionment (SA), identification and characterization studies as well as emission inventories in the EMR. Of 440 articles identified, 82 (11 emission inventory ones) met our inclusion criteria for final analyses. Of 22 EMR countries, Iran with 30 articles had the highest number of studies on source specific PM followed by Pakistan (n = 15 articles) and Saudi Arabia (n = 8 papers). By contrast, there were no studies in Afghanistan, Bahrain, Djibouti, Libya, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Approximately 72% of studies (51) were published within a span of 2015-2021.48 studies identified the sources of PM2.5 and its constituents. Positive matrix factorization (PMF), principal component analysis (PCA) and chemical mass balance (CMB) were the most common approaches to identify the source contributions of ambient PM. Both secondary aerosols and dust, with 12-51% and 8-80% (33% and 30% for all EMR countries, on average) had the greatest contributions in ambient PM2.5. The remaining sources for ambient PM2.5, including mixed sources (traffic, industry and residential (TIR)), traffic, industries, biomass burning, and sea salt were in the range of approximately 4-69%, 4-49%, 1-53%, 7-25% and 3-29%, respectively. For PM10, the most dominant source was dust with 7-95% (49% for all EMR countries, on average). The limited number of SA studies in the EMR countries (one study per approximately 9.6 million people) in comparison to Europe and North America (1 study per 4.3 and 2.1 million people respectively) can be augmented by future studies that will provide a better understanding of emission sources in the urban environment.The interactions of plastics and soil organisms are complex and inconsistent observations on the effects of plastics on soil organisms have been made in published studies. In this study, we assessed the effects of plastic exposure on plants, fauna and microbial communities, with a meta-analysis. Using a total of 2936 observations from 140 publications, we analysed how responses in plants, soil fauna and microorganisms depended on the plastic concentration, size, type, species and exposure media. We found that overall plastics caused substantial detrimental effects to plants and fauna, but less so to microbial diversity and richness. Plastic concentration was one of the most important factors explaining variations in plant and faunal responses. Larger plastics (>1 μm) caused unfavourable changes to plant growth, germination and oxidative stress, while nanoplastics (NPs; ≤ 1 μm) only increased oxidative stress. On the contrary, there was a clear trend showing that small plastics adversely affected fauna reproduction, survival and locomotion than large plastics.

Autoři článku: Korsholmsalisbury7493 (Albrektsen Ivey)