Korsgaardcolon2874

Z Iurium Wiki

BACKGROUND Zinc deficiency impairs immune function and is common among children in South-East Asia. OBJECTIVES The effect of zinc supplementation on immune function in young Laotian children was investigated. METHODS Children (n = 512) aged 6-23 mo received daily preventive zinc tablets (PZ; 7 mg Zn/d), daily multiple micronutrient powder (MNP; 10 mg Zn/d, 6 mg Fe/d, plus 13 other micronutrients), therapeutic dispersible zinc tablets only in association with diarrhea episodes (TZ; 20 mg Zn/d for 10 d after an episode), or daily placebo powder (control). These interventions continued for 9 mo. Cytokine production from whole blood cultures, the concentrations of T-cell populations, and a complete blood count with differential leukocyte count were measured at baseline and endline. Endline means were compared via ANCOVA, controlling for the baseline value of the outcome, child age and sex, district, month of enrollment, and baseline zinc status (below, or above or equal to, the median plasma zinc concentration). entrations. These cell subsets may be useful as indicators of response to zinc supplementation.This trial was registered at clinicaltrials.gov as NCT02428647. Published by Oxford University Press on behalf of the American Society for Nutrition 2020.Zinc dynamics are essential for oocyte meiotic maturation, egg activation, and preimplantation embryo development. During fertilisation and egg activation, the egg releases billions of zinc atoms (Zn2+) in an exocytotic event termed the 'zinc spark'. We hypothesised that this zinc transport and exocytosis is dependent upon the intracellular trafficking of cortical granules (CG) which requires myosin-actin-dependent motors. Treatment of mature mouse and human eggs with ML-7, a myosin light chain kinase inhibitor (MLCK), resulted in an 80% reduction in zinc spark intensity compared to untreated controls when activated with ionomycin. Moreover, CG migration towards the plasma membrane was significantly decreased in ML-7 treated eggs compared with controls when activated parthenogenetically with ionomycin. In sperm-induced fertilisation via intracytoplasmic sperm injection (ICSI), ML-7 treated mouse eggs exhibited decreased labile zinc intensity and cortical CG staining. Collectively, these data demonstrate that ML-7 treatment impairs zinc release from both murine and human eggs after activation, demonstrating that zinc exocytosis requires myosin light chain kinase activity. Further, these results provide additional support that zinc is likely stored and released from CGs. These data underscore the importance of intracellular zinc trafficking as a crucial component of egg maturation necessary for egg activation and early embryo development. © The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. selleck chemical For permissions, please e-mail journals.permissions@oup.com.Endometriosis is a gynecological disease with abnormal expression of interleukin (IL)-37 which can suppress inflammation and the immune system. Here we investigated the role of the IL-37b splice variant in endometriosis in vivo and in vitro. In a murine model of endometriosis, in vivo administration of IL-37b significantly inhibited the development of lesions judged by the number (P = 0.0213), size (P = 0.0130) and weight (P = 0.0152) of lesions. IL-37b had no effect on the early stage of lesion formation, however administration in the growth stage of lesions decreased the number (P = 0.0158), size (P = 0.0158) and weight (P = 0.0258) of lesions compared with PBS control, an effect that was not reversed by macrophage depletion. Expressions of inflammatory factors, matrix metalloproteinases and vascular endothelial growth factor-A mRNA/protein were significantly inhibited in ectopic lesions following IL-37b administration, and in uterine segments treated in vitro. In vitro treatment of uterine segments with IL-37b inhibited phosphorylation of Akt and Erk1/2 in uterine segments. Isolated mouse endometrial stromal treated with IL-37b and transfected with pIL-37b plasmid got suppressed cell proliferation, invasion, angiogenesis and the expression of inflammatory factors. In addition, transfection with pIL-37b significantly decreased the phosphorylation of Akt and Erk1/2. IL-37b also inhibited proliferation and the expression of inflammatory and angiogenesis factors in epithelial cell line RL95-2. These findings suggest that IL-37b may inhibit the growth of lesions by regulating proliferation, invasion, angiogenesis and inflammation through Akt and Erk1/2 signaling pathway. © The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.Nonalcoholic fatty liver disease (NAFLD) is a term used to characterize a range of disease states that involve the accumulation of fat in the liver but are not associated with excessive alcohol consumption. NAFLD is a prevalent disease that can progress to organ damage like liver cirrhosis and hepatocellular carcinoma. Many animal models have demonstrated that one-carbon metabolism is strongly associated with NAFLD. Phosphatidylcholine is an important phospholipid that affects hepatic lipid homeostasis and de novo synthesis of this phospholipid is associated with NAFLD. However, one-carbon metabolism serves to support all cellular methylation reactions and catabolism of methionine, serine, glycine, choline, betaine, tryptophan, and histidine. Several different pathways within one-carbon metabolism that play important roles in regulating energy metabolism and immune function have received less attention in the study of fatty liver disease and fibrosis. This review examines what we have learned about hepatic lipid metabolism and liver damage from the study of one-carbon metabolism thus far and highlights unexplored opportunities for future research. Copyright © The Author(s) 2020.Platelet transfusions are used to treat idiopathic or drug-induced thrombocytopenia. Platelets are an expensive product in limited supply, with limited storage and distribution capabilities because they cannot be frozen. We have demonstrated that, in vitro, human megakaryocytic microparticles (huMkMPs) target human CD34+ hematopoietic stem and progenitor cells (huHSPCs) and induce their Mk differentiation and platelet biogenesis in the absence of thrombopoietin. In this study, we showed that, in vitro, huMkMPs can also target murine HSPCs (muHSPCs) to induce them to differentiate into megakaryocytes in the absence of thrombopoietin. Based on that, using wild-type BALB/c mice, we demonstrated that intravenously administering 2 × 106 huMkMPs triggered de novo murine platelet biogenesis to increase platelet levels up to 49% 16 hours after administration. huMkMPs also largely rescued low platelet levels in mice with induced thrombocytopenia 16 hours after administration by increasing platelet counts by 51%, compared with platelet counts in thrombocytopenic mice.

Autoři článku: Korsgaardcolon2874 (Konradsen Lyng)