Koldingkerr5882

Z Iurium Wiki

COVID-19 has disrupted every aspect of the U.S. health care and health professions education systems, creating anxiety, suffering, and chaos and exposing many of the flaws in the nation's public health, medical education, and political systems. The pandemic has starkly revealed the need for a better public health infrastructure and a health system with incentives for population health and prevention of disease as well as outstanding personalized curative health. It has also provided opportunities for innovations in health care and has inspired courageous actions of residents, who have responded to the needs of their patients despite risk to themselves.In this Invited Commentary, the author shares lessons he learned from three earlier disasters and discusses needed changes in medical education, health care, and health policy that the COVID-19 pandemic has revealed. He encourages health professions educators to use the experiences of this pandemic to reexamine the current curricular emphasis on the bioscientific model of health and to broaden the educational approach to incorporate the behavioral, social, and environmental factors that influence health. Surveillance for disease, investment in disease and injury prevention, and disaster planning should be basic elements of health professions education. Incorporating innovations such as telemedicine, used under duress during the pandemic, could alter educational and clinical approaches to create something better for students, residents, and patients. He explains that journals such as Academic Medicine can provide rapid, curated, expert advice that can be an important counterweight to the misinformation that circulates during disasters. Such journals can also inform their readers about new training in skills needed to mitigate the ongoing effects of the disaster and prepare the workforce for future disasters.The COVID-19 pandemic has been particularly severe in New York City, resulting in a rapid influx of patients into New York-Presbyterian Hospital/Columbia University Irving Medical Center. The challenges precipitated by this pandemic have required urgent changes to existing models of care. Internal medicine residents are at the forefront of caring for patients with COVID-19, including the critically ill. This article describes the exigent restructuring of the New York-Presbyterian Hospital/Columbia University Internal Medicine Residency Program. Patient care and educational models were fundamentally reconceptualized, which required a transition away from traditional hierarchical team structures and a significant expansion in the program's capacity and flexibility to care for large numbers of patients with disproportionately high levels of critical illness. These changes were made while the residency program maintained the priorities of patient care and safety, resident safety and well-being, open communication, and education. The process of adapting the residency program to the demands of the pandemic was iterative given the unprecedented nature of this crisis. The goal of this article is to share the experiences and lessons learned from this crisis, communicate the solutions that were designed, and inform others who may be facing the prospect of creating similar disaster response measures.Off-tumor targeting of human antigens is difficult to predict in preclinical animal studies and can lead to serious adverse effects in patients. To address this, we developed a mouse model with stable and tunable human HER2 (hHER2) expression on normal hepatic tissue and compared toxicity between affinity-tuned HER2 CAR T cells (CARTs). In mice with hHER2-high livers, both the high-affinity (HA) and low-affinity (LA) CARTs caused lethal liver damage due to immunotoxicity. Mice with hHER2-low livers, LA-CARTs exhibited less liver damage and lower systemic levels of IFN-γ than HA-CARTs. We then compared affinity-tuned CARTs for their ability to control a hHER2-positive tumor xenograft in our model. Surprisingly, the LA-CARTs outperformed the HA-CARTs with superior antitumor efficacy in vivo. We hypothesized that this was due in part to T cell trafficking differences between LA and HA-CARTs and found that the LA-CARTs migrated out of the liver and infiltrated the tumor sooner than the HA-CARTs. These findings highlight the importance of T cell targeting in reducing toxicity of normal tissue and also in preventing off-tumor sequestration of CARTs, which reduces their therapeutic potency. Our model may be useful to evaluate various CARTs that have conditional expression of more than one scFv.Patients with hereditary or acquired hemolytic anemias have a high risk of developing in-situ thrombosis of the pulmonary vasculature. While pulmonary thrombosis is a major morbidity associated with hemolytic disorders, the etiological mechanism underlying hemolysis-induced pulmonary thrombosis remains largely unknown. Here, we use intravital lung microscopy in mice for the first time to assess the pathogenesis of pulmonary thrombosis following deionized-water induced acute intravascular hemolysis. Acute hemolysis triggered the development of αIIbβ3-dependent platelet-rich thrombi in precapillary pulmonary arterioles, which led to the transient impairment of pulmonary blood flow. The hemolysis-induced pulmonary thrombosis was phenocopied with intravenous ADP- but not thrombin-triggered pulmonary thrombosis. Consistent with a mechanism involving ADP release from hemolyzing erythrocytes, the inhibition of platelet-P2Y12 purinergic-receptor signaling attenuated pulmonary thrombosis and rescued blood flow in the pulmonary arterioles of mice following intravascular hemolysis. These findings are the first in vivo studies to suggest that acute intravascular hemolysis promotes ADP-dependent platelet activation leading to thrombosis in the pre-capillary pulmonary arterioles and that thrombin generation most likely does not play a significant role in the pathogenesis of acute hemolysis-triggered pulmonary thrombosis.BACKGROUNDFatal cases of COVID-19 are increasing globally. We retrospectively investigated the potential of immunologic parameters as early predictors of COVID-19.METHODSA total of 1018 patients with confirmed COVID-19 were enrolled in our 2-center retrospective study. Clinical feature, laboratory test, immunological test, radiological findings, and outcomes data were collected. Univariate and multivariable logistic regression analyses were performed to evaluate factors associated with in-hospital mortality. Chloroquine mw Receiver operator characteristic (ROC) curves and survival curves were plotted to evaluate their clinical utility.RESULTSThe counts of all T lymphocyte subsets were markedly lower in nonsurvivors than in survivors, especially CD8+ T cells. Among all tested cytokines, IL-6 was elevated most significantly, with an upward trend of more than 10-fold. Using multivariate logistic regression analysis, IL-6 levels of more than 20 pg/mL and CD8+ T cell counts of less than 165 cells/μL were found to be associated with in-hospital mortality after adjusting for confounding factors. Groups with IL-6 levels of more than 20 pg/mL and CD8+ T cell counts of less than 165 cells/μL had a higher percentage of older and male patients as well as a higher proportion of patients with comorbidities, ventilation, intensive care unit admission, shock, and death. Furthermore, the receiver operating curve of the model combining IL-6 (>20 pg/mL) and CD8+ T cell counts (20 pg/mL) and CD8+ T cell counts ( less then 165 cells/μL) are 2 reliable prognostic indicators that accurately stratify patients into risk categories and predict COVID-19 mortality.FundingThis work was supported by funding from the National Natural Science Foundation of China (no. 81772477 and 81201848).The biology of harlequin ichthyosis (HI), a devastating skin disorder, caused by loss of function mutations in the gene ABCA12, is poorly understood and to date no satisfactory treatment has been developed. We sought to investigate pathomechanisms of HI which could lead to the identification of new treatments to improve patients' quality of life. In this study, RNA-Seq and functional assays were performed to define the effects of loss of ABCA12, using HI patient skin samples and an engineered CRISPR-Cas9 ABCA12 KO cell line. The HI living skin equivalent (3D model) recapitulated the HI skin phenotype. The cytokines IL-36α and IL-36γ were upregulated in HI skin whereas the innate immune inhibitor, IL-37, was strongly downregulated. We also identified STAT1 and its downstream target inducible nitric oxide synthase (NOS2) to be upregulated in the in vitro HI 3D model and HI patient skin samples. Inhibition of NOS2 using the inhibitor, 1400W, or the JAK inhibitor, tofacitinib, dramatically improved the in vitro HI phenotype by restoring the lipid barrier in the HI 3D model. Our study has identified dysregulated pathways in HI skin that are feasible therapeutic targets.Following myocardial infarction (MI), the adult heart has minimal regenerative potential. Conversely, the neonatal heart can undergo extensive regeneration, and neovascularisation capacity was hypothesised to contribute to this difference. Here, we demonstrate the higher angiogenic potential of neonatal compared to adult mouse cardiac endothelial cells (MCECs) in vitro and use this difference to identify candidate microRNAs (miRs) regulating cardiac angiogenesis after MI. MiR expression profiling revealed miR-96 and miR-183 upregulation in adult compared to neonatal MCECs. Their overexpression decreased the angiogenic potential of neonatal MCECs in vitro and prevented scar resolution and neovascularisation in neonatal mice after MI. Inversely, their inhibition improved the angiogenic potential of adult MCECs, and miR-96/miR-183 knock-out mice had increased peri-infarct neovascularisation. In silico analyses identified anillin (ANLN) as a direct target of miR-96 and miR-183. In agreement, Anln expression declined following their overexpression and increased after their inhibition in vitro. Moreover, ANLN expression inversely correlated with miR-96 expression and age in cardiac ECs of cardiovascular patients. In vivo, ANLN-positive vessels were enriched in the peri-infarct area of miR-96/miR-183 knock-out mice. These findings identify miR-96 and miR-183 as regulators of neovascularisation following MI and miR-regulated genes such as anillin as potential therapeutic targets for cardiovascular disease.HIV-1 remains incurable due to the persistence of proviral DNA integrated into host cells, providing a reservoir for viral rebound upon cessation of antiretroviral therapy (ART). There is evidence for sex-based differences in HIV-1 immune responses and pathogenesis, but little is known about differences in HIV-1 persistence. To address this knowledge gap, we quantified persistent HIV-1 in 90 adults on suppressive ART in Rakai, Uganda (57 females). Total HIV-1 DNA was quantified by PCR and replication competent provirus by the quantitative viral outgrowth assay (QVOA). Immune phenotyping of T cell subsets and plasma biomarkers was also performed. We found that while both sexes had similar levels of total HIV DNA, females had significantly fewer cells harboring replication-competent virus, as measured by viral outgrowth in the QVOA. Predictors of viral outgrowth differed by sex; notably, frequency of PD-1+ CD4 T cells correlated with reservoir size in males, but not females. The sex-based differences in HIV-1 persistence observed in this cohort warrant additional research, especially given the widespread use of the QVOA to assess reservoir size and current explorations of PD-1 agonists in cure protocols.

Autoři článku: Koldingkerr5882 (Pilegaard Crowley)