Kokholmsigmon9904
07; 95% CI, 0.94 to 1.23; P = 0.301; 100% response; RR = 1.06; 95% CI, 0.81 to 1.37; P = 0.682; MHD RR = - 0.08; 95% CI, - 0.55 to - 0.40; P = 0.748) while related to a lower risk for adverse events for the treatment of migraine (120 mg RR = 1.06; 95% CI, 0.99 to 1.14; P = 0.084; 240 mg RR = 1.17; 95% CI, 1.09 to 1.25; P less then 0.001). 300 mg per month galcanezumab is effective for the prevention of episodic cluster headache measured by at least 50% reduction of cluster headache frequency at week 3 (RR = 1.36; 95% CI, 1.00-1.84; P = 0.048). CONCLUSIONS Use of galcanezumab is related to a significantly reduced monthly headache frequency compared with placebo for the treatment of migraine and episodic cluster headache, 120 mg has the same treatment efficacy with 240 mg group while related to a lower risk for adverse effects for the treatment of migraine. 300 mg per month galcanezumab is effective for the prevention of episodic cluster headache with no significantly increased adverse events.BACKGROUND Tannerella forsythia is a bacterial pathogen implicated in periodontal disease. Numerous virulence-associated T. forsythia genes have been described, however, it is necessary to expand the knowledge on T. forsythia's genome structure and genetic repertoire to further elucidate its role within pathogenesis. Tannerella sp. BU063, a putative periodontal health-associated sister taxon and closest known relative to T. forsythia is available for comparative analyses. In the past, strain confusion involving the T. forsythia reference type strain ATCC 43037 led to discrepancies between results obtained from in silico analyses and wet-lab experimentation. RESULTS We generated a substantially improved genome assembly of T. forsythia ATCC 43037 covering 99% of the genome in three sequences. Using annotated genomes of ten Tannerella strains we established a soft core genome encompassing 2108 genes, based on orthologs present in > = 80% of the strains analysed. We used a set of known and hypothetical virulence ggest novel putative virulence factors. Further, we report on gene loci that should be addressed in the context of elucidating T. forsythia's protein O-glycosylation pathway. In summary, our work paves the way for further molecular dissection of T. forsythia biology in general and virulence of this species in particular.BACKGROUND RNA-Seq is the preferred method to explore transcriptomes and to estimate differential gene expression. When an organism has a well-characterized and annotated genome, reads obtained from RNA-Seq experiments can be directly mapped to that genome to estimate the number of transcripts present and relative expression levels of these transcripts. However, for unknown genomes, de novo assembly of RNA-Seq reads must be performed to generate a set of contigs that represents the transcriptome. These contig sets contain multiple transcripts, including immature mRNAs, spliced transcripts and allele variants, as well as products of close paralogs or gene families that can be difficult to distinguish. Thus, tools are needed to select a set of less redundant contigs to represent the transcriptome for downstream analyses. Here we describe the development of Compacta to produce contig sets from de novo assemblies. RESULTS Compacta is a fast and flexible computational tool that allows selection of a representative set of contigs from de novo assemblies. this website Using a graph-based algorithm, Compacta groups contigs into clusters based on the proportion of shared reads. The user can determine the minimum coverage of the contigs to be clustered, as well as a threshold for the proportion of shared reads in the clustered contigs, thus providing a dynamic range of transcriptome compression that can be adapted according to experimental aims. We compared the performance of Compacta against state of the art clustering algorithms on assemblies from Arabidopsis, mouse and mango, and found that Compacta yielded more rapid results and had competitive precision and recall ratios. We describe and demonstrate a pipeline to tailor Compacta parameters to specific experimental aims. CONCLUSIONS Compacta is a fast and flexible algorithm for the determination of optimum contig sets that represent the transcriptome for downstream analyses.BACKGROUND Visits in emergency departments and hospital admissions are common among nursing home (NH) residents and they are associated with significant complications. Many of these transfers are considered inappropriate. This study aimed to compare the perceptions of general practitioners (GPs) and NH staff on hospital transfers among residents and to illustrate measures for improvement. METHODS Two cross-sectional studies were conducted as surveys among 1121 GPs in the German federal states Bremen and Lower Saxony and staff from 1069 NHs (preferably nursing staff managers) from all over Germany, each randomly selected. Questionnaires were sent in August 2018 and January 2019, respectively. The answers were compared between GPs and NH staff using descriptive statistics, Mann-Whitney U tests and χ2-tests. RESULTS We received 375 GP questionnaires (response 34%) and 486 NH questionnaires (response 45%). GPs estimated the proportion of inappropriate transfers higher than NH staff (hospital admissions 35.0% vs. m to pass the responsibility to each other. These findings, however, support the need for interprofessional collaboration.BACKGROUND Feature selection is a crucial step in machine learning analysis. Currently, many feature selection approaches do not ensure satisfying results, in terms of accuracy and computational time, when the amount of data is huge, such as in 'Omics' datasets. RESULTS Here, we propose an innovative implementation of a genetic algorithm, called GARS, for fast and accurate identification of informative features in multi-class and high-dimensional datasets. In all simulations, GARS outperformed two standard filter-based and two 'wrapper' and one embedded' selection methods, showing high classification accuracies in a reasonable computational time. CONCLUSIONS GARS proved to be a suitable tool for performing feature selection on high-dimensional data. Therefore, GARS could be adopted when standard feature selection approaches do not provide satisfactory results or when there is a huge amount of data to be analyzed.BACKGROUND Haplotypes combine the effects of several single nucleotide polymorphisms (SNPs) with high linkage disequilibrium, which benefit the genome-wide association analysis (GWAS). In the haplotype association analysis, both haplotype alleles and blocks are tested. Haplotype alleles can be inferred with the same statistics as SNPs in the linear mixed model, while blocks require the formulation of unified statistics to fit different genetic units, such as SNPs, haplotypes, and copy number variations. RESULTS Based on the FaST-LMM, the fastLmPure function in the R/RcppArmadillo package has been introduced to speed up genome-wide regression scans by a re-weighted least square estimation. When large or highly significant blocks are tested based on EMMAX, the genome-wide haplotype association analysis takes only one to two rounds of genome-wide regression scans. With a genomic dataset of 541,595 SNPs from 513 maize inbred lines, 90,770 haplotype blocks were constructed across the whole genome, and three types of markers (SNPs, haplotype alleles, and haplotype blocks) were genome-widely associated with 17 agronomic traits in maize using the software developed here. CONCLUSIONS Two SNPs were identified for LNAE, four haplotype alleles for TMAL, LNAE, CD, and DTH, and only three blocks reached the significant level for TMAL, CD, and KNPR. Compared to the R/lm function, the computational time was reduced by ~ 10-15 times.BACKGROUND Acetolactate synthase (ALS)-inhibiting herbicides from the chemical families of sulfonylureas and imidazolinones are used worldwide. However, drift or sprayer contamination from some sulfonylurea herbicides causes a high level of male sterility in cruciferous species, especially oilseed rape (OSR). In this paper, we evaluated the gametocidal effects of 27 ALS-inhibiting herbicides that were sprayed on OSR plants at the bolting stage. RESULTS OSR anther development was very sensitive to sublethal exposure to most ALS-inhibiting herbicides. The application of 18 out of the 20 tested sulfonylureas (except ethametsulfuron and ethoxysulfuron), two imidazolinones (imazethapyr and imazamox), and one sulfonylamino-carbonyltriazolinone (flucarbazone-sodium) at suitable rates could induce male sterility. Eight of the herbicides, including chlorsulfuron (at application rates of 60-120 mg/ha), halosulfuron-methyl (300-600 mg/ha), sulfosulfuron (400-600 mg/ha), triflusulfuron-methyl (500-750 mg/ha), pyrazosulfu three triazolopyrimidines (florasulam, flumetsulam, and penoxsulam) and one pyrimidinylthiobenzoate (bispyribac-sodium) did not cause male sterility, although these herbicides obviously inhibited the activity of ALS and plant growth. This result suggests that inhibition of ALS activity does not always lead to male sterility in plants, and these gametocides may also inhibit other biological functions vital for microspore development.BACKGROUND Lotus (Nelumbo nucifera) is an aquatic plant with important agronomic, horticulture, art and religion values. It was the basal eudicot species occupying a critical phylogenetic position in flowering plants. After the domestication for thousands of years, lotus has differentiated into three cultivated types -flower lotus, seed lotus and rhizome lotus. Although the phenotypic and genetic differentiations based on molecular markers have been reported, the variation on whole-genome level among the different lotus types is still ambiguous. RESULTS In order to reveal the evolution and domestication characteristics of lotus, a total of 69 lotus accessions were selected, including 45 cultivated accessions, 22 wild sacred lotus accessions, and 2 wild American lotus accessions. With Illumina technology, the genomes of these lotus accessions were resequenced to > 13× raw data coverage. On the basis of these genomic data, 25 million single-nucleotide polymorphisms (SNPs) were identified in lotus. Population annce, improving seed weight and size, or regulating lotus rhizome size. The domestication history of lotus enhances our knowledge of perennial aquatic crop evolution, and the obtained dataset provides a basis for future genomics-enabled breeding.BACKGROUND Musculoskeletal (MSK) pain from the five most common presentations to primary care (back, neck, shoulder, knee or multi-site pain), where the majority of patients are managed, is a costly global health challenge. At present, first-line decision-making is based on clinical reasoning and stratified models of care have only been tested in patients with low back pain. We therefore, examined the feasibility of; a) a future definitive cluster randomised controlled trial (RCT), and b) General Practitioners (GPs) providing stratified care at the point-of-consultation for these five most common MSK pain presentations. METHODS The design was a pragmatic pilot, two parallel-arm (stratified versus non-stratified care), cluster RCT and the setting was 8 UK GP practices (4 intervention, 4 control) with randomisation (stratified by practice size) and blinding of trial statistician and outcome data-collectors. Participants were adult consulters with MSK pain without indicators of serious pathologies, urgent medical needs, or vulnerabilities.