Kokholmhesselberg0156

Z Iurium Wiki

In the case in which the water droplet fully climbs the step, the time taken for the water droplet to fully climb the step showed a non-monotonic pattern as the step height increases.Plasmonic metasurfaces are promising as enablers of nanoscale nonlinear optics and flat nonlinear optical components. Nonlinear optical responses of such metasurfaces are determined by the nonlinear optical properties of individual plasmonic meta-atoms. Unfortunately, no simple methods exist to determine the nonlinear optical properties (hyperpolarizabilities) of the meta-atoms hindering the design of nonlinear metasurfaces. Here, we develop the equivalent RLC circuit (resistor, inductor, capacitor) model of such meta-atoms to estimate their second-order nonlinear optical properties, that is, the first-order hyperpolarizability in the optical spectral range. In parallel, we extract from second-harmonic generation experiments the first-order hyperpolarizabilities of individual meta-atoms consisting of asymmetrically shaped (elongated) plasmonic nanoprisms, verified with detailed calculations using both nonlinear hydrodynamic-FDTD and nonlinear scattering theory. All three approaches, analytical, experimental, and computational, yield results that agree very well. Our empirical RLC model can thus be used as a simple tool to enable an efficient design of nonlinear plasmonic metasurfaces.A nonenzymatic kinetic resolution of sterically congested alcohols having a quaternary carbon atom in the β-position is reported. The catalyst system CuCl/NaOtBu/(R,R)-Ph-BPE together with a 3,5-xylyl-substituted tertiary hydrosilane enable enantioselective silylation of the hydroxy group. Several alcohols are obtained with good to excellent selectivity factors, and there are no other known straightforward methods to access these motifs.A Fe(OTf)3- and γ-cyclodextrin catalyzed hydroamination of alkenes with carbazoles is demonstrated. This biomimetic-catalyst-oriented sustainable and green method could deliver a wide scope of N-alkylated carbazoles and N-alkylated-carbazole-fused aromatics in up to 97% yield. The salient features of this transformation include simple and benign reaction conditions with no need for a strong base, additive, or the irradiation of light.The realization of multifunctional nanomaterials is both fundamentally intriguing and practically appealing to be used in nanoscale devices. Here, a heterobilayer consisting of realistic 2D-material components of matching lattice symmetry, that is, one being the β-phase antimonene β-Sb known for its strong spin-orbit coupling and ferroelectric In2Se3 monolayer, is designed and explored with first-principles density functional theory. The ferroelectric polarization of the In2Se3 layer induces distinctly different electronic properties in the bilayer. With polarization directed "inward", the bilayer is a trivial insulator with spatially-indirect band gap (potentially beneficial for photovoltaics). Surprisingly, when polarized "outward", the bilayer displays nontrivial topological state, Z2 = 1. This suggests that the external electric field can reversibly switch between these two states, inviting potential applications in future multifunctional devices.The first asymmetric total synthesis of rumphellclovane E, a clovane-type sesquiterpenoid, has been accomplished in eight steps from commercially available (R)-carvone. Key elements of the synthesis include Rh-catalyzed cyclopropanation, iron-catalyzed intramolecular reductive aldol reaction, and SmI2-mediated chemo- and diastereoselective reduction of the cyclopentanone.This research was focused on the raw material level construction of bismuth oxybromide (BiOBr) catalysis-loaded 3D cross-linked network polyurethane (PU) foam via the in situ polymerization method. After modification of superhydrophobic polydivinylbenzene nanoparticles, the PU foam possessed excellent superhydrophobic stability. The larger selective absorption oil phase capacity depended on its macroporous structure, and the existence of catalyst BiOBr (the band gap energy was about 2.57 eV) among the PU foam played a crucial role in degrading water-soluble contaminants under visible light irradiation. In this article, the photocatalytic experiment results verify that it has remarkable recycle degradation ability (the degradation efficiency can reach ∼97%) and the capture experiments indicate that the uppermost active species is h+.Biomimetic total syntheses of Festuclavine and Pyroclavine were achieved by a sequential radical coupling. The key steps include intramolecular decarboxylative Giese reaction to form the central C ring and 4-nitrobenzenesulfonyl (Ns)-directed indole C4-H olefination to introduce the indole C4 component. In addition, D-ring formation was completed by decarboxylative alkenylation and intramolecular SN2 reaction.The potential of proton transfer reactions as a fundamental mechanism to realize a nanoscale molecular transistor is investigated. Employing density functional theory and the nonequilibrium Green's function formalism, we identify molecule-graphene nanojunctions, which exhibit high- and low-conducting states depending on the specific location of protons in the molecular bridge. In addition, we show that an electrostatic gate field can control the proton transfer process and thus allow specific conductance states to be selected. selleck In this way, the current in the junction can be switched on and off as in a field-effect transistor. The underlying mechanism is analyzed in detail.Elaborate fragments of the proposed stereostructure of the complex polyketide antibiotic vancoresmycin have been synthesized in a stereoselective fashion based on a modular and convergent approach. Significant nuclear magnetic resonance differences in one of these subunits compared with the natural product question the proposed stereoconfiguration. Consequently, an extensive bioinformatics analysis of the biosynthetic gene cluster was carried out, leading to a revised stereoconfigurational proposal for this highly potent antibiotic.Nanotechnology is a very promising technological tool to combat health problems associated with the loss of effectiveness of currently used antibiotics. Previously, we developed a formulation consisting of a chitosan and tween 80-decorated alginate nanocarrier that encapsulates rifampicin and the antioxidant ascorbic acid (RIF/ASC), intended for the treatment of respiratory intracellular infections. Here, we investigated the effects of RIF/ASC-loaded NPs on the respiratory mucus and the pulmonary surfactant. In addition, we evaluated their cytotoxicity for lung cells in vitro, and their biodistribution on rat lungs in vivo after their intratracheal administration. Findings herein demonstrated that RIF/ASC-loaded NPs display a favorable lung biocompatibility profile and a uniform distribution throughout lung lobules. RIF/ASC-loaded NPs were mainly uptaken by lung macrophages, their primary target. In summary, findings show that our novel designed RIF/ASC NPs could be a suitable system for antibiotic lung administration with promising perspectives for the treatment of pulmonary intracellular infections.

Autoři článku: Kokholmhesselberg0156 (Vendelbo Goldman)