Kokholmbernard5322

Z Iurium Wiki

In this paper, we present the results of a comparison of two estimators of the gross vehicle weight (GVW) and the static load of individual axles of vehicles. The estimators were used to process measurement data derived from Multi-Sensor Weigh-In-Motion systems (MS-WIM). The term estimator is understood as an algorithm according to which the dynamic axle load measurement results are processed in order to determine the static load. The result obtained is called static load estimate. As a measure of measurement uncertainty, we adopted the standard deviation of the static load estimate. The mean value and the maximum likelihood estimators were compared. Studies were conducted using simulation methods based on synthetic data and experimental data obtained from a WIM system equipped with 16 lines of polymer axle load sensors. We have shown a substantially lower uncertainty of estimates determined using the maximum likelihood estimator. The results obtained have considerable practical significance, particularly during long-term usage of multi-sensor WIM systems.This study reported the phytochemical composition of two hydroethanolic extracts of Acacia senegal and Acacia seyal trees from Burkina Faso and their activities, alone or in combination with selected antibiotics, against multidrug resistant bacteria. High performance thin layer chromatography (HPTLC) method was used for phytochemical screening. Total phenolic and total flavonoid ant tannins in leaves extracts contents were assessed by spectrophotometric method. The minimal inhibitory concentrations (MICs) of plant extracts and antibiotics were determined using the microdilution method and p-iodonitrotetrazolium chloride. Combinations of extracts and antibiotics were studied using checkerboard assays. Screening revealed the presence of phenolic compounds, flavonoids, and tannins in the hydroethanolic extract (HE) of the leaves. The HE of A. seyal showed the highest total phenolic (571.30 ± 6.97 mg GAE/g), total flavonoids (140.41 ± 4.01 mg RTE/g), and tannins (24.72 ± 0.14%, condensed; 35.77 ± 0.19%, hydrolysable tannins). However, the HE of A. senegal showed the lowest total phenolic (69.84 ± 3.54 mg GAE/g), total flavonoids (27.32 ± 0.57 mg RTE/g), and tannins (14.60 ± 0.01%, condensed; 3.09 ± 0.02%, hydrolysable). The MICs for HE and antibiotics were in the range of 2-512 and 0.008-1024 mg/L, respectively. All tested HE presented an MIC greater than 512 mg/L except HE of A. senegal. The lowest MIC value (128 mg/L) was obtained with HE of A. senegal against Klebsiella aerogenes EA298 and Escherichia coli AG100A. Interesting restoring effects on chloramphenicol and florphenicol activity were detected with alcoholic extracts of A. senegal against resistant E. coli and K. aerogenes strains that overproduce AcrAB or FloR pumps. The adjuvant effect of HE of A. senegal suggests that the crude extract of leaves could be a potential source of molecules for improving the susceptibility of bacteria to phenicols antibiotics.Botrytis cinerea is a ubiquitous necrotrophic filamentous fungal phytopathogen that lacks host specificity and can affect more than 1000 different plant species. In this work, we explored L1 [(E)-2-[(2-aminopyridin-2-yl)imino]-methyl-4,6-di-tert-butylphenol], a pyridine Schiff base harboring an intramolecular bond (IHB), regarding their antifungal activity against Botrytis cinerea. Moreover, we present a full characterization of the L1 by NMR and powder diffraction, as well as UV-vis, in the presence of previously untested different organic solvents. Complementary time-dependent density functional theory (TD-DFT) calculations were performed, and the noncovalent interaction (NCI) index was determined. Noradrenaline bitartrate monohydrate mw Moreover, we obtained a scan-rate study on cyclic voltammetry of L1. Finally, we tested the antifungal activity of L1 against two strains of Botrytis cinerea (B05.10, a standard laboratory strain; and A1, a wild type strains isolated from Chilean blueberries). We found that L1 acts as an efficient antifungal agent against Botrytis cinerea at 26 °C, even better than the commercial antifungal agent fenhexamid. Although the antifungal activity was also observed at 4 °C, the effect was less pronounced. These results show the high versatility of this kind of pyridine Schiff bases in biological applications.There is no vaccine or specific antiviral treatment for COVID-19, which is causing a global pandemic. One current focus is drug repurposing research, but those drugs have limited therapeutic efficacies and known adverse effects. The pathology of COVID-19 is essentially unknown. Without this understanding, it is challenging to discover a successful treatment to be approved for clinical use. This paper addresses several key biological processes of reactive oxygen, halogen and nitrogen species (ROS, RHS and RNS) that play crucial physiological roles in organisms from plants to humans. These include why superoxide dismutases, the enzymes to catalyze the formation of H2O2, are required for protecting ROS-induced injury in cell metabolism, why the amount of ROS/RNS produced by ionizing radiation at clinically relevant doses is ~1000 fold lower than the endogenous ROS/RNS level routinely produced in the cell and why a low level of endogenous RHS plays a crucial role in phagocytosis for immune defense. Herein we propose a plausible amplification mechanism in immune defense ozone-depleting-like halogen cyclic reactions enhancing RHS effects are responsible for all the mentioned physiological functions, which are activated by H2O2 and deactivated by NO signaling molecule. Our results show that the reaction cycles can be repeated thousands of times and amplify the RHS pathogen-killing (defense) effects by 100,000 fold in phagocytosis, resembling the cyclic ozone-depleting reactions in the stratosphere. It is unraveled that H2O2 is a required protective signaling molecule (angel) in the defense system for human health and its dysfunction can cause many diseases or conditions such as autoimmune disorders, aging and cancer. We also identify a class of potent drugs for effective treatment of invading pathogens such as HIV and SARS-CoV-2 (COVID-19), cancer and other diseases, and provide a molecular mechanism of action of the drugs or candidates.

Autoři článku: Kokholmbernard5322 (Thompson Xu)