Kokadkins5100
Attred distributes the workload of key generations and resource registration and reduces the risk of central authority management. In addition, some of the heavy computations in our proposed model can be securely distributed using secret sharing that allows a more efficient resource registration, without affecting the required security properties. The performance analysis results showed that the distributed computation can significantly reduce the computation cost while maintaining the functionality. The performance and security analysis results also showed that our model can efficiently provide the required security properties of discovery correctness, soundness, resource privacy and client privacy.Human action recognition methods in videos based on deep convolutional neural networks usually use random cropping or its variants for data augmentation. However, this traditional data augmentation approach may generate many non-informative samples (video patches covering only a small part of the foreground or only the background) that are not related to a specific action. These samples can be regarded as noisy samples with incorrect labels, which reduces the overall action recognition performance. In this paper, we attempt to mitigate the impact of noisy samples by proposing an Auto-augmented Siamese Neural Network (ASNet). In this framework, we propose backpropagating salient patches and randomly cropped samples in the same iteration to perform gradient compensation to alleviate the adverse gradient effects of non-informative samples. Salient patches refer to the samples containing critical information for human action recognition. The generation of salient patches is formulated as a Markov decision process, and a reinforcement learning agent called SPA (Salient Patch Agent) is introduced to extract patches in a weakly supervised manner without extra labels. Extensive experiments were conducted on two well-known datasets UCF-101 and HMDB-51 to verify the effectiveness of the proposed SPA and ASNet.This paper presents a novel self-localization technique for mobile robots using a central catadioptric camera. A unified sphere model for the image projection is derived by the catadioptric camera calibration. The geometric property of the camera projection model is utilized to obtain the intersections of the vertical lines and ground plane in the scene. Different from the conventional stereo vision techniques, the feature points are projected onto a known planar surface, and the plane equation is used for depth computation. The 3D coordinates of the base points on the ground are calculated using the consecutive image frames. The derivation of motion trajectory is then carried out based on the computation of rotation and translation between the robot positions. selleck chemical We develop an algorithm for feature correspondence matching based on the invariability of the structure in the 3D space. The experimental results obtained using the real scene images have demonstrated the feasibility of the proposed method for mobile robot localization applications.With the advancement of technology and the arrival of miniaturized environmental sensors that offer greater performance, the idea of building mobile network sensing for air quality has quickly emerged to increase our knowledge of air pollution in urban environments. However, with these new techniques, the difficulty of building mathematical models capable of aggregating all these data sources in order to provide precise mapping of air quality arises. In this context, we explore the spatio-temporal geostatistics methods as a solution for such a problem and evaluate three different methods Simple Kriging (SK) in residuals, Ordinary Kriging (OK), and Kriging with External Drift (KED). On average, geostatistical models showed 26.57% improvement in the Root Mean Squared Error (RMSE) compared to the standard Inverse Distance Weighting (IDW) technique in interpolating scenarios (27.94% for KED, 26.05% for OK, and 25.71% for SK). The results showed less significant scores in extrapolating scenarios (a 12.22% decrease in the RMSE for geostatisical models compared to IDW). We conclude that univariable geostatistics is suitable for interpolating this type of data but is less appropriate for an extrapolation of non-sampled places since it does not create any information.Multi-dimensional acceleration sensors are used in important applications in the aerospace, weapon equipment, and nuclear fields and have strict requirements in terms of performance, volume, and mass. Fiber Bragg grating acceleration sensors use optical wavelength signals as a medium for information transmission to effectively eliminate the influence of electromagnetic interference between multi-dimensional sensors. In this study, we designed a composite flexure hinge three-dimensional acceleration sensor. To this end, we investigated the coupling mechanism between a new integrated elastomer structure and fiber grating to determine the influence of structural parameters on the static and dynamic characteristics, volume, and mass of the sensor. By optimizing the strain distribution, amplitude, and frequency and coupling characteristics between dynamic dimensions, a design theory and a method for integrating the three-dimensional acceleration sensor were developed. The size of the optimized accelerometer is only 25 mm × 25 mm × 30 mm. Performance testing revealed that, along the three spatial dimensions, the sensor had sensitivities of 51.9, 39.5, and 20.3 pm/g, respectively, resonance frequencies of 800, 1125, and 1750 Hz, respectively, and a measurable frequency range of 0-250 Hz.Imitation learning is an effective approach for an autonomous agent to learn control policies when an explicit reward function is unavailable, using demonstrations provided from an expert. However, standard imitation learning methods assume that the agents and the demonstrations provided by the expert are in the same domain configuration. Such an assumption has made the learned policies difficult to apply in another distinct domain. The problem is formalized as domain adaptive imitation learning, which is the process of learning how to perform a task optimally in a learner domain, given demonstrations of the task in a distinct expert domain. We address the problem by proposing a model based on Generative Adversarial Network. The model aims to learn both domain-shared and domain-specific features and utilizes it to find an optimal policy across domains. The experimental results show the effectiveness of our model in a number of tasks ranging from low to complex high-dimensional.