Kockvincent4064

Z Iurium Wiki

Furthermore, CBZ@Lipo exhibited an expressively enhanced tumor growth inhibition effect comparing to CBZ solution. More importantly, CBZ@Lipo showed an obviously higher biosafety proved by lower hemolysis probability, stable body weight of mice during the whole experiment and no obvious lesion in histology analysis. Our work provided a useful reference of the formulation of CBZ, which had potential for greater clinical application. © 2018 Published by Elsevier B.V. on behalf of Shenyang Pharmaceutical University.The objective of this work is to construct a nanosuspension drug delivery system of probucol, a BCS II drug, in order to improve its dissolution and oral bioavailability. The wet milling procedure using planetary beads-milling equipment was utilized to grind the raw probucol to ultrafine nanoparticle/nanocrystal aqueous suspension that was further solidified by freeze-drying process. Cellulose derivatives of different substitution groups and molecular weights, including HPMC, HPC, and MC, were evaluated as the primary stabilizer of probucol nanosuspension. Ternary stabilizers system composed of a primary stabilizer (cellulose derivative, i.e. HPC), a nonionic surfactant (Pluronic® F68), and an anionic surfactant (SDS) was employed to obtain probucol nanosuspension of finer particle size and enhanced dissolution in aqueous media. The probucol nanosuspension with good physical stability showed no obvious change of particle size even after storing over 7 d at 4 °C or 25 °C. The solidified probucol nanosuspension with trehalose as the cryoprotectant showed the highest dissolution rate (> 60% at 2 h) compared to other cryoprotectant. The in vivo pharmacokinetic evaluation indicated about 15-folds higher AUC value of the probucol nanosuspension compared to that of coarse probucol suspension after oral administration to rats. The probucol nanosuspension prepared by wet-milling and ternary stabilizers system may find wide applications for improving the dissolution and oral absorption of water-insoluble drugs. © 2018 Shenyang Pharmaceutical University. Published by Elsevier B.V.Honokiol (HK) usage is greatly restricted by its poor aqueous solubility and limited oral bioavailability. We synthesized and characterized a novel phosphate prodrug of honokiol (HKP) for in vitro and in vivo use. HKP greatly enhanced the aqueous solubility of HK (127.54 ± 15.53 mg/ml) and the stability in buffer solution was sufficient for intravenous administration. The enzymatic hydrolysis of HKP to HK was extremely rapid in vitro (T1/ 2  = 8.9 ± 2.11 s). Pharmacokinetics studies demonstrated that after intravenous administration of HKP (32 mg/kg), HKP was converted rapidly to HK with a time to reach the maximum plasma concentration of ∼5 min. The prodrug HKP achieved an improved T1/2 (7.97 ± 1.30 h) and terminal volume of distribution (26.02 ± 6.04 ml/kg) compared with direct injection of the equimolar parent drug (0.66 ± 0.01 h) and (2.90 ± 0.342 ml/kg), respectively. Furthermore, oral administration of HKP showed rapid and improved absorption compared with the parent drug. HKP was confirmed to maintain the bioactivity of the parent drug for ameliorating ischemia-reperfusion injury by decreasing brain infarction and improving neurologic function. Taken together, HKP is a potentially useful aqueous-soluble prodrug with improved pharmacokinetic properties which may merit further development as a potential drug candidate. © 2018 Shenyang Pharmaceutical University. Published by ARV-771 (MCT1) is responsible for oral absorption of short-chain monocarboxylic acids from small intestine, hence, it's likely to serve as an ideal design target for the development of oral prodrugs. However, potential application of MCT1 to facilitate the oral delivery is still unclear. Irregular oral absorption, poor permeability and bioavailability greatly limit the oral delivery efficiency of 5-fluorouracil (5-FU). Herein, we design three 5-FU-fatty acid conjugates targeting intestinal MCT1 with different lipophilic linkages. #link# Interestingly, due to high MCT1 affinity and good gastrointestinal stability, 5-FU-octanedioic acid monoester prodrug exhibited significant improvement in membrane permeability (13.1-fold) and oral bioavailability (4.1-fold) compared to 5-FU. More surprisingly, stability experiment in intestinal homogenates showed that 5-FU prodrugs could be properly activated to release 5-FU within intestinal cells, which provides an ideal foundation for the improvement of oral bioavailability. In summary, good gastrointestinal stability, high membrane permeability and appropriate intestinal cell bioactivation are the important factors for high-efficiency 5-FU oral prodrugs, and such work provides a good platform for the development of novel oral prodrugs targeting intestinal transporters. © 2019 Published by Elsevier B.V. on behalf of Shenyang Pharmaceutical University.Quercetin is a biologically active flavonoid that has been used as a popular health supplement. It is reported that quercetin may cause flavonoid-drug interaction mediated by P-glycoprotein, the most predominant efflux transporter. In this study, we comprehensively evaluated the potential of the pharmacokinetic interaction of quercetin mediated by multidrug resistance-associated protein 2 (MRP2), another major efflux transporter. MRP2-transfected MDCKII cells and LS174T cells were used to evaluate the potential inhibition and induction of MRP2 by quercetin in vitro. To evaluate the induction effect of quercetin on Mrp2 in vivo, Mrp2 mRNA expression in rat liver, kidney, and small intestinal tissues was determined after the oral administration of quercetin (50, 100, or 250 mg/kg) for seven days. Mrp2-mediated interaction potential was also evaluated by the pharmacokinetic study of phenolsulfonphthalein in rats after single or multiple doses of quercetin. Additionally, the effect of quercetin on absorption of docetaxel, a P-glycoprotein and CYP3A4 substrate, was also evaluated. Quercetin inhibited the function of MRP2 at 10 µM and induced the mRNA expression of MRP2 at 50 µM in vitro. Additionally, at 100 mg/kg, quercetin markedly increased Mrp2 expression in the small intestine of rats. However, there was no significant change in phenolsulfonphthalein pharmacokinetics due to single- (50, 100, or 250 mg/kg) or multiple-dose (50, 100, or 250 mg/kg for seven days) quercetin co-administration. By contrast, a significant interaction caused by quercetin (100 mg/kg) was observed in the absorption of docetaxel. The results suggested that although quercetin modulates the function and expression of MRP2 in vitro, it may have a low potential of Mrp2-mediated interaction and present negligible safety concerns related to the interaction. © 2019 Shenyang Pharmaceutical University. Published by Elsevier B.V.

Autoři článku: Kockvincent4064 (Schmidt Daniel)