Kochellis5110

Z Iurium Wiki

Moist, breathable and antibacterial microenvironment can promote cell proliferation and migration, which is beneficial to wound healing. Here, we fabricated a novel sodium alginate-chitosan oligosaccharide‑zinc oxide (SA-COS-ZnO) composite hydrogel by spontaneous Schiff base reaction, using aldehydated sodium alginate (SA), chitosan oligosaccharide (COS), and zinc oxide (ZnO) nanoparticles, which can provide a moist and antibacterial environment for wound healing. The porosity and swelling degree of SA-COS-ZnO hydrogel are 80% and 150%, respectively, and its water vapor permeability is 682 g/m2/24h. The composite hydrogel showed good biocompatibility to blood cells, 3T3 cells, and 293T cells, and significant antibacterial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and Bacillus subtilis. Moreover, the hydrogel showed a promoting effect on wound healing in a rat scald model. The present study suggests that marine carbohydrates composite hydrogels are promising in wound care management.Although chondroitin sulfate calcium complex (CSCa) was claimed to have the bioactivity for bone care in vitro, its anti-osteoporosis bioactivity was little reported in vivo. Here, the effects of CSCa on osteoporosis rats were investigated. Results showed that, compared with the osteoporosis rats, CSCa could improve the bone mineral density and microstructure of femur, and change the bone turnover markers level in serum. 16S rRNA sequencing and metabolomics analysis indicated CSCa intervention altered the composition of gut microbiota along with metabolite profiles in ovariectomized rat faeces. The correlation analysis showed some gut microbiota taxa were significantly correlated with osteoporosis phenotypes and the enriched metabolites. Taken together, dietary CSCa intervention has the potential to alleviate the osteoporosis and related symptoms probably involving gut microbiota or the metabolite profiles as demonstrated in rats. This study provides some scientific evidence for the potential effects of CSCa as the food supplement on the osteoporosis.Transdermal drug delivery is considered one of the most attractive routes for administration of pharmaceutic and cosmetic active ingredients due to the numerous advantages, especially over oral and intravenous methodologies. However, some limitations still exist mainly regarding the need to improve the drugs permeation across the skin. For this, several strategies have been described, considering the application of chemical permeation enhancers, drugs' nanoformulations and physical methods. Cytoskeletal Signaling inhibitor Of these, microneedles have been proposed in the last years as promising strategies to enhance transdermal drug delivery. In this review, different types of microneedles are described, and the most commonly used methods of fabrication systematized, as well as the materials typically used and their main therapeutical applications. A special attention is paid to polymeric microneedles, particularly those made from sustainable marine polysaccharides like chitosan, alginate and hyaluronic acid. The applications of marine based polymeric microneedle devices for transdermal drug delivery are examined in detail and the perspectives of translation from the clinical trials to the market demonstrated.Bacterial nanocellulose production is gaining popularity owing to its applications in food, cosmetics and medical industry. Three Acetobacter strains isolated from organic waste and fermented tea were identified using 16S rDNA sequencing and their ability to produce nanocellulose was studied. Strain isolated from Kombucha has 99% homology with Komagataeibacter rhaeticus DSM 16663 T. This is the first report where nanocellulose productivity of this strain with different carbon sources such as glucose, glycerol, fructose and sucrose has been studied. 1% glycerol was found to be optimal concentration, with up to 69% of the utilized carbon converted to nanocellulose. Maximum productivity of 4.5 g/L of bacterial nanocellulose was obtained. Average nitrogen and phosphorus consumption rate was 45 mg/L/day each. Physical properties such as crystallinity, fibril dimensions, and glass transition temperature were studied. Bacterial cellulose was 80% crystalline when glycerol and glucose were used as carbon source and 73% for fructose and sucrose. Renewable materials such as bacterial cellulose with their unique properties are the future for applications in the field of cosmetics, composite and wound care.Plant cell walls exhibit excellent mechanical properties, which form the structural basis for sustainable bioresources and multifunctional nanocelluloses. The wall nanomechanical properties of living cells through covalent modifications of hybrid inorganic elements, such as silicon, may confer significant influence on local mechano-response and enzymatic degradation. Here, we present a combination of ex situ measurements of enzyme-released oligosaccharide fragments using MALDI-TOF MS and in situ atomic force microscopy (AFM) imaging through PeakForce quantitative nanomechanical mapping of tip-functionalized single-molecule enzyme-polysaccharide substrate recognition and the nanoscale dissolution kinetics of individual cellulose microfibrils of living rice (Oryza sativa) cells following silicate cross-linking of cell wall xyloglucan. We find that xyloglucan-bound silicon enhances the resistance to degradation by cellulase and improves the wall nanomechanical properties in the elastic modulus at the single-cell level. The findings establish a direct link between an inorganic element of silicon and the nanoscale architecture of plant cell wall materials for sustainable utilization.Extracellular vesicles (EV) are defined as nanosized particles, with a lipid bilayer, that are unable to replicate. There has been an exponential increase of research investigating these particles in a wide array of diseases and deleterious states (inflammation, oxidative stress, drug-induced liver injury) in large part due to increasing recognition of the functional capacity of EVs. Cells can package lipids, proteins, miRNAs, DNA, and RNA into EVs and send these discrete packages of molecular information to distant, recipient cells to alter the physiological state of that cell. EVs are innately heterogeneous as a result of the diverse molecular pathways that are used to generate them. However, this innate heterogeneity of EVs is amplified due to the diversity in isolation techniques and lack of standardized nomenclature in the literature making it unclear if one scientist's "exosome" is another scientist's "microvesicle." One goal of this chapter is to provide the contextual understanding of EV origin so one can discern between divergent nomenclature. Further, the chapter will explore the potential protective and harmful roles that EVs play in DILI, and the potential of EVs and their cargo as a biomarker. The use of EVs as a therapeutic as well as a vector for therapeutic delivery will be discussed.The electroencephalogram (EEG) is the most important method to diagnose epilepsy. In clinical settings, it is evaluated by experts who identify patterns visually. Quantitative EEG is the application of digital signal processing to clinical recordings in order to automatize diagnostic procedures, and to make patterns visible that are hidden to the human eye. The EEG is related to chemical biomarkers, as electrical activity is based on chemical signals. The most well-known chemical biomarkers are blood laboratory tests to identify seizures after they have happened. However, research on chemical biomarkers is much less extensive than research on quantitative EEG, and combined studies are rarely published, but highly warranted. Quantitative EEG is as old as the EEG itself, but still, the methods are not yet standard in clinical practice. The most evident application is an automation of manual work, but also a quantitative description and localization of interictal epileptiform events as well as seizures can reveal important hints for diagnosis and contribute to presurgical evaluation. In addition, the assessment of network characteristics and entropy measures were found to reveal important insights into epileptic brain activity. Application scenarios of quantitative EEG in epilepsy include seizure prediction, pharmaco-EEG, treatment monitoring, evaluation of cognition, and neurofeedback. The main challenges to quantitative EEG are poor reliability and poor generalizability of measures, as well as the need for individualization of procedures. A main hindrance for quantitative EEG to enter clinical routine is also that training is not yet part of standard curricula for clinical neurophysiologists.Coronary artery disease (CAD), the most common cardiovascular disease (CVD), contributes to significant mortality worldwide. CAD is a multifactorial disease wherein various factors contribute to its pathogenesis often complicating management. Biomarker based personalized medicine may provide a more effective way to individualize therapy in multifactorial diseases in general and CAD specifically. Systems' biology "Omics" biomarkers have been investigated for this purpose. These biomarkers provide a more comprehensive understanding on pathophysiology of the disease process and can help in identifying new therapeutic targets and tailoring therapy to achieve optimum outcome. Metabolomics biomarkers usually reflect genetic and non-genetic factors involved in the phenotype. Metabolomics analysis may provide better understanding of the disease pathogenesis and drug response variation. This will help in guiding therapy, particularly for multifactorial diseases such as CAD. In this chapter, advances in metabolomics analysis and its role in personalized medicine will be reviewed with comprehensive focus on CAD. Assessment of risk, diagnosis, complications, drug response and nutritional therapy will be discussed. Together, this chapter will review the current application of metabolomics in CAD management and highlight areas that warrant further investigation.In this chapter we discuss the past, present and future of clinical biomarker development. We explore the advent of new technologies, paving the way in which health, medicine and disease is understood. This review includes the identification of physicochemical assays, current regulations, the development and reproducibility of clinical trials, as well as, the revolution of omics technologies and state-of-the-art integration and analysis approaches.Oxidative stress (OS) plays a key role in the pathophysiology of preterm infants. Accurate assessment of OS remains an analytical challenge that has been partially addressed during the last few decades. A plethora of approaches have been developed to assess preterm biofluids to demonstrate a link postnatally with preterm OS, giving rise to a set of widely employed biomarkers. However, the vast number of different analytic methods and lack of standardization hampers reliable comparison of OS-related biomarkers. In this chapter, we discuss approaches for the study of OS in prematurity with respect to methodologic considerations, the metabolic source of different biomarkers and their role in clinical studies.

Autoři článku: Kochellis5110 (Kramer Roman)