Klitcobb0562

Z Iurium Wiki

Strikingly, the RV response in PCLS was reflective of gene expression changes described in COPD and asthma patients. While RV-induced host immune responses were abrogated by rupintrivir, RV-triggered epithelial processes were largely refractory to antiviral treatment. Detailed analysis of RV-infected human PCLS and comparison with COPD and asthma patient gene signatures revealed that the human RV PCLS model represents disease relevant biological mechanisms that can be partially inhibited by a well-known antiviral compound and provide an outstanding opportunity to evaluate novel therapeutics. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http//creativecommons.org/licenses/by-nc-nd/4.0/).We report the results of inelastic differential scattering experiments and full-dimensional molecular dynamics trajectory simulations for 2.76 eV H atoms colliding at a surface of solid xenon. The interaction potential is based on an effective medium theory (EMT) fit to density functional theory (DFT) energies. The translational energy-loss distributions derived from experiment and theory are in excellent agreement. By analyzing trajectories, we find that only a minority of the scattering results from simple single-bounce dynamics. The majority comes from multibounce collisions including subsurface scattering where the H atoms penetrate below the first layer of Xe atoms and subsequently re-emerge to the gas phase. This behavior leads to observable energy-losses as large as 0.5 eV, much larger than a prediction of the binary collision model (0.082 eV), which is often used to estimate the highest possible energy-loss in direct inelastic surface scattering. The sticking probability computed with the EMT-PES (0.15) is dramatically reduced (5 × 10-6) if we employ a full-dimensional potential energy surface (PES) based on Lennard-Jones (LJ) pairwise interactions. Although the LJ-PES accurately describes the interactions near the H-Xe and Xe-Xe energy minima, it drastically overestimates the effective size of the Xe atom seen by the colliding H atom at incidence energies above about 0.1 eV.We investigate the interaction of excitons in monolayer WSe2 with the piezoelectric field of surface acoustic wave (SAW) at room temperature using photoluminescence (PL) spectroscopy and report a large in-plane exciton polarizability of 8.43 ± 0.18 × 10-6 Dm/V. Such large polarizability arises due to the strong dielectric screening from the piezoelectric substrate. In addition, we show that the exciton-piezoelectric field interaction and population distribution between neutral excitons and trions can be optically manipulated by controlling the field screening using photogenerated free carriers. Finally, we model the broadening of the exciton PL line width and report that the interaction is dominated by type-II band edge modulation, because of the in-plane electric field in the system. The results help understand the interaction of excitons in monolayer transition-metal dichalcogenides that will aid in controlled manipulation of excitonic properties for applications in sensing, detection, and on-chip communication.The homoleptic rhodium pyridine complex [Rh(py)4]+ ([1]+) is prepared from simple precursors. Lacking good π-acceptor ligands but being sterically protected, [1]+ reversibly oxidizes to colorless [Rh(py)4(thf)2]2+. This monomeric S = 1/2 Rh(II) complex activates H2 to give [HRh(py)4L]2+, which can also be generated by protonation of [1]+. The Rh(III)-H bond is weak, being susceptible to H atom abstraction as well as deprotonation. These results underpin a novel catalytic system for the oxidation of H2 by ferrocenium.Coherence-enhanced light harvesting has not been directly observed experimentally, despite theoretical evidence that coherence can significantly enhance light-harvesting performance. The main experimental obstacle has been the difficulty in isolating the effect of coherence in the presence of confounding variables. Recent proposals for externally controlling coherence by manipulating the light's degree of polarization showed that coherent efficiency enhancements would be possible, but they were restricted to light-harvesting systems weakly coupled to their environment. Here, we show that increases in system-bath coupling strength can amplify coherent efficiency enhancements, rather than suppress them. This result dramatically broadens the range of systems that could be used to conclusively demonstrate coherence-enhanced light harvesting or to engineer coherent effects into artificial light-harvesting devices.Three new sodium zinc antimonides Na11Zn2Sb5, Na4Zn9Sb9, and NaZn3Sb3 were synthesized utilizing sodium hydride NaH as a reactive sodium source. In comparison to the synthesis using sodium metal, salt-like NaH can be ball-milled, leading to the easy and uniform mixing of precursors in the desired stoichiometric ratios. Such comprehensive compositional control enables a fast screening of the Na-Zn-Sb system and identification of new compounds, followed by their preparation in bulk with high purity. Na11Zn2Sb5 crystallizes in the triclinic P1 space group (No. 2, Z = 2, a = 8.8739(6) Å, b = 10.6407(7) Å, c = 11.4282(8) Å, α = 103.453(2)°, β = 96.997(2)°, γ = 107.517(2)°) and features polyanionic [Zn2Sb5]11- clusters with unusual 3-coordinated Zn atoms. Both Na4Zn9Sb9 (Z = 4, a = 28.4794(4) Å, b = 4.47189(5) Å, c = 17.2704(2) Å, β = 98.3363(6)°) and NaZn3Sb3 (Z = 8, a = 32.1790(1) Å, b = 4.51549(1) Å, c = 9.64569(2) Å, β = 98.4618(1)°) crystallize in the monoclinic C2/m space group (No. 12) and have complex new structure types. For both compounds, their frameworks are built from ZnSb4 distorted tetrahedra, which are linked via edge-, vertex-sharing, or both, while Na cations fill in the framework channels. Due to the complex structures, Na4Zn9Sb9 and NaZn3Sb3 compounds exhibit low thermal conductivities (0.97-1.26 W·m-1 K-1) at room temperature, positive Seebeck coefficients (19-32 μV/K) suggestive of holes as charge carriers, and semimetallic electrical resistivities (∼1.0-2.3 × 10-4 Ω·m). CCS-1477 clinical trial Na4Zn9Sb9 and NaZn3Sb3 decompose into the equiatomic NaZnSb above ∼800 K, as determined by in situ synchrotron powder X-ray diffraction. The discovery of multiple ternary compounds highlights the importance of judicious choice of the synthetic method.

Autoři článku: Klitcobb0562 (Omar Hill)