Klineturner0111
Cyclic adenosine monophosphate (cAMP) is a canonical intracellular messenger playing diverse roles in cell functions. In neurons, cAMP promotes axonal growth during early development, and mediates sensory transduction and synaptic plasticity after maturation. The molecular cascades of cAMP are well documented, but its spatiotemporal profiles associated with neuronal functions remain hidden. Hence, we developed a genetically encoded cAMP indicator based on a bacterial cAMP-binding protein. This indicator "gCarvi" monitors [cAMP]i at 0.2 to 20 µM with a subsecond time resolution and a high specificity over cyclic guanosine monophosphate (cGMP). gCarvi can be converted to a ratiometric probe for [cAMP]i quantification and its expression can be specifically targeted to various subcellular compartments. Monomeric gCarvi also enables simultaneous multisignal monitoring in combination with other indicators. As a proof of concept, simultaneous cAMP/Ca2+ imaging in hippocampal neurons revealed a tight linkage of cAMP to Ca2+ signals. In cerebellar presynaptic boutons, forskolin induced nonuniform cAMP elevations among boutons, which positively correlated with subsequent increases in the size of the recycling pool of synaptic vesicles assayed using FM dye. Thus, the cAMP domain in presynaptic boutons is an important determinant of the synaptic strength.Photoinduced phase transition (PIPT) is always treated as a coherent process, but ultrafast disordering in PIPT is observed in recent experiments. Utilizing the real-time time-dependent density functional theory method, here we track the motion of individual vanadium (V) ions during PIPT in VO2 and uncover that their coherent or disordered dynamics can be manipulated by tuning the laser fluence. We find that the photoexcited holes generate a force on each V-V dimer to drive their collective coherent motion, in competing with the thermal-induced vibrations. If the laser fluence is so weak that the photoexcited hole density is too low to drive the phase transition alone, the PIPT is a disordered process due to the interference of thermal phonons. We also reveal that the photoexcited holes populated by the V-V dimerized bonding states will become saturated if the laser fluence is too strong, limiting the timescale of photoinduced phase transition.Abnormal placentation has been noticed in a variety of pregnancy complications such as miscarriage, early-onset preeclampsia, and fetal growth restriction. Defects in the developmental program of extravillous trophoblasts (EVTs), migrating from placental anchoring villi into the maternal decidua and its vessels, is thought to be an underlying cause. Yet, key regulatory mechanisms controlling commitment and differentiation of the invasive trophoblast lineage remain largely elusive. Herein, comparative gene expression analyses of HLA-G-purified EVTs, isolated from donor-matched placenta, decidua, and trophoblast organoids (TB-ORGs), revealed biological processes and signaling pathways governing EVT development. In particular, bioinformatics analyses and manipulations in different versatile trophoblast cell models unraveled transforming growth factor-β (TGF-β) signaling as a crucial pathway driving differentiation of placental EVTs into decidual EVTs, the latter showing enrichment of a secretory gene signature. Removal of Wingless signaling and subsequent activation of the TGF-β pathway were required for the formation of human leukocyte antigen-G+ (HLA-G+) EVTs in TB-ORGs that resemble in situ EVTs at the level of global gene expression. Accordingly, TGF-β-treated EVTs secreted enzymes, such as DAO and PAPPA2, which were predominantly expressed by decidual EVTs. Their genes were controlled by EVT-specific induction and genomic binding of the TGF-β downstream effector SMAD3. In summary, TGF-β signaling plays a key role in human placental development governing the differentiation program of EVTs.The role of autophagy in cancer is complex. Both tumor-promoting and tumor-suppressive effects are reported, with tumor type, stage and specific genetic lesions dictating the role. https://www.selleckchem.com/products/msdc-0160.html This calls for analysis in models that best recapitulate each tumor type, from initiation to metastatic disease, to specifically understand the contribution of autophagy in each context. Here, we report the effects of deleting the essential autophagy gene Atg7 in a model of pancreatic ductal adenocarcinoma (PDAC), in which mutant KrasG12D and mutant Trp53172H are induced in adult tissue leading to metastatic PDAC. This revealed that Atg7 loss in the presence of KrasG12D/+ and Trp53172H/+ was tumor promoting, similar to previous observations in tumors driven by embryonic KrasG12D/+ and deletion of Trp53. However, Atg7 hemizygosity also enhanced tumor initiation and progression, even though this did not ablate autophagy. Moreover, despite this enhanced progression, fewer Atg7 hemizygous mice had metastases compared with animals wild type for this allele, indicating that ATG7 is a promoter of metastasis. We show, in addition, that Atg7+/- tumors have comparatively lower levels of succinate, and that cells derived from Atg7+/- tumors are also less invasive than those from Atg7+/+ tumors. This effect on invasion can be rescued by ectopic expression of Atg7 in Atg7+/- cells, without affecting the autophagic capacity of the cells, or by treatment with a cell-permeable analog of succinate. These findings therefore show that ATG7 has roles in invasion and metastasis that are not related to the role of the protein in the regulation of autophagy.Physicians' professional ethics require that they put patients' interests ahead of their own and that they should allocate limited medical resources efficiently. Understanding physicians' extent of adherence to these principles requires understanding the social preferences that lie behind them. These social preferences may be divided into two qualitatively different trade-offs the trade-off between self and other (altruism) and the trade-off between reducing differences in payoffs (equality) and increasing total payoffs (efficiency). We experimentally measure social preferences among a nationwide sample of practicing physicians in the United States. Our design allows us to distinguish empirically between altruism and equality-efficiency orientation and to accurately measure both trade-offs at the level of the individual subject. We further compare the experimentally measured social preferences of physicians with those of a representative sample of Americans, an "elite" subsample of Americans, and a nationwide sample of medical students. We find that physicians' altruism stands out. Although most physicians place a greater weight on self than on other, the share of physicians who place a greater weight on other than on self is twice as large as for all other samples-32% as compared with 15 to 17%. Subjects in the general population are the closest to physicians in terms of altruism. The higher altruism among physicians compared with the other samples cannot be explained by income or age differences. By contrast, physicians' preferences regarding equality-efficiency orientation are not meaningfully different from those of the general sample and elite subsample and are less efficiency oriented than medical students.Extractive document summarization (EDS) is usually seen as a sequence labeling task, which extracts sentences from a document one by one to form a summary. However, extracting sentences separately ignores the relationship between the sentences and documents. One solution is to use sentence position information to enhance sentence representation, but this will cause the sentence-leading bias problem, especially in news datasets. In this paper, we propose a novel sentence centrality for the EDS task to address these two problems. The sentence centrality is based on directed graphs, while reflecting the sentence-document relationship, it also reflects the sentence position information in the document. We implicitly strengthen the relevance of sentences and documents by using sentence centrality to enhance sentence representation. Notably, we replaced the sentence position information with sentence centrality to reduce sentence-leading bias without causing model performance degradation. Experiments on the CNN/Daily Mail dataset showed that EDS models with sentence centrality significantly improved compared with baseline models.
Increasingly, people are using social media (SM) to express grief, and researchers are using this data to investigate the phenomenon of mourning. As this research progresses, it is important to understand how studies are being conducted and how authors are approaching ethical challenges related to SM data.
The aim of this review was to explore how SM data are being used to research experiences of mourning through the following questions a) 'Which topics related to mourning are being studied?'; b) 'What study designs have been used to analyse SM data'; c) 'What type of data (natural or generated) have been used?'; and d) 'How are ethical decisions being considered?'.
The JBI Scoping Review methodology guided this review. Eligibility criteria were determined using the PCC framework, and relevant key words and phrases derived from these criteria were used to search eight databases in September 2021 (CINAHL, Embase, LILACS, OpenGrey, ProQuest, PsycINFO, PubMed and Scopus). The Preferred Reporting Items for and highlighted the variability in approaches to data analysis. Ethical concerns relating to SM data collection are identified and discussed. This is an emerging and rapidly changing field of research that offers new opportunities and challenges for exploring the phenomenon of mourning.Genotyping Plasmodium vivax relapses can provide insights into hypnozoite biology. We performed targeted amplicon sequencing of 127 relapses occurring in Indonesian soldiers returning to malaria-free Java after yearlong deployment in malarious Eastern Indonesia. Hepatic carriage of multiple hypnozoite clones was evident in three-quarters of soldiers with two successive relapses, yet the majority of relapse episodes only displayed one clonal population. The number of clones detected in relapse episodes decreased over time and through successive relapses, especially in individuals who received hypnozoiticidal therapy. Interrogating the multiplicity of infection in this P. vivax relapse cohort reveals evidence of independent activation and slow depletion of hypnozoites over many months by multiple possible mechanisms, including parasite senescence and host immunity.Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products.