Klineskriver5346
Our results demonstrate that γ-CD-MOFs can be regarded as a promising novel carrier for the delivery of curcumin or other hydrophobic nutraceuticals.Litchis are tasty fruit with economic importance. However, the extreme susceptibility of harvested litchis to litchi downy blight caused by Peronophythora litchii leads to compromised quality. This study aimed to study the effects of melatonin on postharvest resistance to P. litchii in 'Feizixiao' litchis. Results showed that melatonin restricted lesion expansion in litchis after P. litchi inoculation. Melatonin enhanced the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase and 4-hydroxycinnamate CoA ligase while promoting the accumulations of phenolics and flavonoids. Nicotinamide adenine dinucleotide phosphate content and glucose-6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase activities were higher in treated fruit than control fruit. Higher energy status along with elevated H+-ATPase, Ca2+-ATPase, succinate dehydrogenase and cytochrome C oxidase activities were observed in treated fruit. Ultrastructural observation showed reduced damage in mitochondria in treated fruit. The results suggest that melatonin induced resistance in litchis by modulating the phenylpropanoid and pentose phosphate pathways as well as energy metabolism. .To improve the crop yield and quality, the cytosolic fructose-1,6-bisphosphatase (cFBPase) from mung bean (Vigna radiata), a rate-limiting enzyme in gluconeogenesis, was cloned, purified, and structurally characterised. To function it required Mg2+ and Mn2+ at 0.01-10 mM. The Michaelis-Menton constant and adenosine monophosphate (AMP) inhibitory constant (Ki) were 7.96 and 111.09 μM, respectively. Selleckchem PRT062070 The functional site residues of AMP binding (Arg30, Asp32, and Phe33) and the active site residues (Asn218 and Met251) were tested via site-directed mutagenesis and molecular docking. Asn218 and Met251 were replaced by Tyr and Leu, respectively. The M251L mutant showed enhanced substrate affinity and activity, resulting from decreased binding energy (-2.58 kcal·mol-1) and molecular distance (4.2 Å). AMP binding site mutations changed the enzyme activities, indicating a connection between the binding and active sites. Furthermore, Ki and docking analysis revealed that Asp32 plays a key role in maintaining the AMP binding conformation.Cold chain (-20 °C) is one of the main transportation methods for storage of Tan sheep products. Lipids (66) in seven subclasses involved in sphingolipid, glycerophospholipid and fatty acid degradation metabolism were quantified in Tan sheep under cold chain storage, including fatty acyl carnitines, phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE), ceramides, sphingomyelin (SM) and lysophosphatidylethanolamine (LPE). Lipid transformation and molecular mechanism analyzed using fragmentation mechanisms and UHPLC-Q-Orbitrap MS/MS combined with lipidomics approaches determined transient increases of certain PC, PE and fatty acyl carnitine during the first 12 days of cold storage, subsequent declines of SM, PC, PE and fatty acyl carnitine, as well as increases of ceramide, LPC and LPE (24 days). These results offered insights into lipid transformation and quality of Tan sheep during cold chain storage.The interaction between ovalbumin (OVA) and isoflavonoid glabridin (GB) was investigated using spectroscopic and molecular docking techniques. Fluorescence spectroscopy revealed that GB was bound to OVA mainly due to hydrogen bonding and hydrophobic forces. FT-IR spectroscopy showed that the combination of GB and OVA resulted in a decrease in the β-sheet content of OVA and an increase in the α-helix and extended-chain content. All these experimental results were supported and clarified by molecular docking simulations. GB binding was able to inhibit chemical denaturant-induced structural changes in OVA as observed by intrinsic tryptophan and ANS fluorescence. Moreover, GB-OVA complex increased the aqueous solubility of GB by about 4.45 times at pH 7.0. These results provided insights into the interaction between GB and OVA that contributes to the utilization of GB in the food and pharmaceutical industries.Archived video footage from a previous task analysis study where children attempted to open prescription vials outfitted with 42 mm (diameter) push and turn closures was reviewed and grip postures were characterized based on a grip taxonomy presented by Rowson & Yoxall which investigated adult grips (2011). Video review was conducted to identify the types of grip postures children aged 3-5 years utilized when attempting to open continuous thread polypropylene vials outfitted with push and turn, child-resistant closures and compared with grip postures identified with the adults. Children tended to utilize only 3 grip postures (spherical, cylindrical, and pronated cylindrical grips), while adults utilized seven different postures. If children utilize a more limited set of grip postures when opening child resistant closures than their adult counterparts, this difference could be exploited when designing child resistant packaging systems. That said, our study utilized a limited number of CRC designs and confounds existed between the package sizes the children in the archived video footage attempted to open and those that served as the point of comparison which identified grip postures utilized by adults. As such, further investigation is needed across a range of package diameters. Potential implications for child-resistant packaging design are discussed.This study investigated the effects of simulating self-motion via a head-mounted display (HMD) on standing postural sway and spatial presence. Standing HMD users viewed simulated oscillatory self-motion in depth. On a particular trial, this naso-occipital visual oscillation had one of four different amplitudes (either 4, 8, 12 or 16 m peak-to-peak) and one of four different frequencies (either 0.125, 0.25, 0.5 or 1 Hz). We found that simulated high amplitude self-oscillation (approximately 16 m peak-to-peak) at either 0.25 Hz or 0.5 Hz 1) generated the strongest effects on postural sway; and 2) made participants feel more spatially present in the virtual environment. Our findings provide insight into the parameters of simulated self-motion that generate the strongest postural responses within virtual environments. These postural constraints have valuable implications for improving our understanding of sensory processes underlying the ergonomic experience of virtual environments simulated using HMDs.