Kleinvaughn2157
Since the quality and safety of food highly depend on its preservation and protection, the use of food packaging materials increases the risk of chemical contamination of the packaged food by migration. Herein, we focused on antioxidants, photoinitiators, UV absorbers and plasticizers which are extensive additives used in food packaging materials. In the present study, a rapid, simple, green and reliable method was developed and validated for the determination of twelve chemical additives in edible vegetable oils using SFC together with a modified QuEChERS procedure. Under the optimum conditions, twelve additives were separated within 10 min, and the consumption of the organic solvent was significantly reduced, which improved the environmentally friendliness. The performance of the developed method was evaluated. Good linearity (r > 0.999) was obtained in the range of 0.20-20.0 µg/mL and 0.50-20.0 µg/mL, respectively. The limits of detection and limits of quantification of the twelve additives in vegetable oils were 0.05-0.15 µg/mL and 0.15-0.50 µg/mL, respectively. Recoveries of all the chemical additives for the spiked samples were between 60.9% and 106.4%, with relative standard deviations (RSD) lower than 9.9%. The results demonstrated that the proposed method was efficient, reliable and robust for the routine analysis of additives in edible vegetable oils and can be an alternative to the multi-residue analysis of chemical additives for other packaged foods.5-Hydroxytryptamine (5-HT, serotonin) is a neurotransmitter in both the central nervous system and peripheral structures, acting also as a hormone in platelets. Although its concentration in the gut covers >90% of all organism resources, serotonin is mainly known as a neurotransmitter that takes part in the pathology of mental diseases. Serotonin modulates not only CNS neurons, but also pain transmission and platelet aggregation. In the periphery, 5-HT influences muscle motility in the gut, bronchi, uterus, and vessels directly and through neurons. Serotonin synthesis starts from hydroxylation of orally delivered tryptophan, followed by decarboxylation. Serotonin acts via numerous types of receptors and clinically plays a role in several neural, mental, and other chronic disorders, such as migraine, carcinoid syndrome, and some dysfunctions of the alimentary system. 5-HT acts as a paracrine hormone and growth factor. 5-HT receptors in both the brain and gut are targets for drugs modifying serotonin neurotransmission. The aim of the present article is to review the 5-HT receptors in the gastrointestinal (GI) tract to determine the role of serotonin in GI physiology and pathology, including known GI diseases and the role of serotonin in GI pharmacotherapy.The purpose of this study was to evaluate the sun protection factor (SPF) of cosmetic emulsions with the addition of hydroalcoholic apple extract. First, the total polyphenolic content, the antioxidant activity and SPF properties of the extracts obtained by sonication and refluxing were evaluated. The two extraction methods were improved using the central composite design. For cosmetic emulsion that contained a different concentration of apple extract (10-40%), a SPF value between 0.51 and 0.90 was obtained. The most efficient apple extract was obtained by reflux using 50% ethanol and a 60 min extraction time. The concentrated extract was incorporated in a cosmetic emulsion whose SPF maximum was 0.90. Accordingly, due to photoprotective properties, the apple extract can be a candidate for use in cosmetic formulations.Recently, we reported a new approach to develop pairwise analytical corrections to improve the description of noncovalent interactions, by approximate methods of electronic structures, such as semiempirical quantum mechanical (SQM) methods. In particular, and as a proof of concept, we used the PM6 Hamiltonian and we named the method PM6-FGC, where the FGC acronym, corresponding to Functional Group Corrections, emphasizes the idea that the corrections work for specific functional groups rather than for individual atom pairs. The analytical corrections were derived from fits to B3LYP-D3/def2-TZVP (reference). PM6 interaction energy differences, evaluated for a reduced set of small bimolecular complexes, were chosen as representatives of saturated hydrocarbons, carboxylic, amine and, tentatively, amide functional groups. For the validation, the method was applied to several complexes of well-known databases, as well as to complexes of diglycine and dialanine, assuming the transferability of amine group corrections to amide groups. The PM6-FGC method showed great potential but revealed significant inaccuracies for the description of some interactions involving the -NH2 group in amines and amides, caused by the inadequate selection of the model compound used to represent these functional groups (an NH3 molecule). In this work, methylamine and acetamide are used as representatives of amine and amide groups, respectively. This new selection leads to significant improvements in the calculation of noncovalent interactions in the validation set.Marine organisms are an important source of natural products with unique and diverse chemical structures that may hold the key for the development of novel drugs. Docosahexaenoic acid (DHA) is an omega-3 fatty acid marine natural product playing a crucial regulatory role in the resolution of inflammation and acting as a precursor for the biosynthesis of the anti-inflammatory specialized pro-resolving mediators (SPMs) resolvins, protectins, and maresins. These metabolites exert many beneficial actions including neuroprotection, anti-hypertension, or anti-tumorigenesis. As dysregulation of SPMs is associated with diseases of prolonged inflammation, the disclosure of their bioactivities may be correlated with anti-inflammatory and pro-resolving capabilities, offering new targets for drug design. The availability of these SPMs from natural resources is very low, but the evaluation of their pharmacological properties requires their access in larger amounts, as achieved by synthetic routes. In this report, the first review of the total organic syntheses carried out for resolvins, protectins, and maresins is presented. Recently, it was proposed that DHA-derived pro-resolving mediators play a key role in the treatment of COVID-19. In this work we also review the current evidence on the structures, biosynthesis, and functional and new-found roles of these novel lipid mediators of disease resolution.In this study, the essential oils (EOs) obtained from three endemic Prangos species from Turkey (P. heyniae, P. meliocarpoides var. meliocarpoides, and P. uechtritzii) were studied for their chemical composition and biological activities. β-Bisabolenal (12.2%) and caryophyllene oxide (7.9%) were the principal components of P. heyniae EO, while P. meliocarpoides EO contained sabinene (16.7%) and p-cymene (13.2%), and P. uechtritzii EO contained p-cymene (24.6%) and caryophyllene oxide (19.6%), as the most abundant components. With regard to their antioxidant activity, all the EOs were found to possess free radical scavenging potential demonstrated in both DPPH and ABTS assays (0.43-1.74 mg TE/g and 24.18-92.99 mg TE/g, respectively). Additionally, while no inhibitory activity was displayed by P. meliocarpoides and P. uechtritzii EOs against both cholinesterases (acetyl- and butyryl-cholinesterases). Moreover, all the EOs were found to act as inhibitors of tyrosinase (46.34-69.56 mg KAE/g). Molecular docking revealed elemol and α-bisabolol to have the most effective binding affinity with tyrosinase and amylase. Altogether, this study unveiled some interesting biological activities of these EOs, especially as natural antioxidants and tyrosinase inhibitors and hence offers stimulating prospects of them in the development of anti-hyperpigmentation topical formulations.The roots of Peucedanum japonicum (Apiaceae) have been used as an alternative to the roots of Saposhnikovia divaricata (Apiaceae) to treat common cold-related symptoms in Korea. However, a variety of Peucedanum species, including the roots of P. praeruptorum or Angelica decursiva (=P. decursivum), have been used to treat phlegm-heat-induced symptoms in China. Hence, as there are differences in the medicinal application of P. japonicum roots between Korea and China, chemotaxonomic classification of P. check details japonicum was evaluated. Sixty samples derived from P. japonicum, P. praeruptorum, A. decursiva, and S. divaricata were phylogenetically identified using DNA barcoding tools, and chemotaxonomic correlations among the samples were evaluated using chromatographic profiling with chemometric analyses. P. japonicum samples were phylogenetically grouped into the same cluster as P. praeruptorum samples, followed by S. divaricata samples at the next cluster level, whereas A. decursiva samples were widely separated from the other species. Moreover, P. japonicum samples showed higher chemical correlations with P. praeruptorum samples or A. decursiva samples, but lower or negative chemical correlations with S. divaricata samples. These results demonstrate that P. japonicum is more genetically and chemically relevant to P. praeruptorum or A. decursiva and, accordingly, the medicinal application of P. japonicum might be closer to the therapeutic category of these two species than that of S. divaricata.The discovery of safe and effective plant polysaccharides with immunomodulatory effects has become a research hotspot. Raspberry is an essential commercial fruit and is widely distributed, cultivated, and consumed worldwide. In the present study, a homogeneous acidic polysaccharide (RPP-2a), with a weight-average molecular weight (Mw) of 55582 Da, was isolated from the pulp of raspberries through DEAE-Sepharose Fast Flow and Sephadex G-200 chromatography. RPP-2a consisted of rhamnose, arabinose, galactose, glucose, xylose, galacturonic acid and glucuronic acid, with a molar ratio of 15.49.67.63.29.154.30.8. The results of Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometer (GC-MS), 1D-, and 2D-nuclear magnetic resonance (NMR) analyses suggested that the backbone of RPP-2a was primarily composed of →2)-α-L-Rhap-(1→, →2,4)-α-L-Rhap-(1→, →4)-α-D-GalAp-(1→, and →3,4)-α-D-Glcp-(1→ sugar moieties, with side chains of α-L-Araf-(1→, α-L-Arap-(1→, and β-D-Galp-(1→3)-β-D-Galp-(1→ residues linked to the O-4 band of rhamnose and O-3 band of glucose residues. Furthermore, RPP-2a exhibited significant macrophage activation activity by increasing the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and the expression of inducible nitric oxide synthase (iNOS) and cytokines at the transcriptional level in RAW264.7 cells. Overall, the results indicate that RPP-2a can be utilized as a potential natural immune-enhancing agent.The presence of sulfur-carbon bonds is transversal to several areas of chemistry, e.g., drug discovery, materials, and chemical biology. However, a lack of efficient and sustainable procedures for the preparation of thioaminals, the N,S-analogues of O,O-acetals, contributes to this functional group often being overlooked by the scientific community. In this work is described the formation of thioaminals in water promoted by copper(II) triflate.