Kjeldsenhvidberg8505

Z Iurium Wiki

17605/OSF.IO/A98KN). Two independent researchers screened the titles, abstracts, and full texts of the articles, assessing their eligibility for inclusion. Results The search identified 5,082 articles, in which 2,265 articles were screened to assess their eligibility. Sixty-two studies remained following full-text screening. LVO detection techniques were categorised into 5 groups stroke scales (n = 30), imaging and physiological methods (n = 15), algorithmic and machine learning approaches (n = 9), physical symptoms (n = 5), and biomarkers (n = 3). Conclusions This scoping review has explored literature on novel and advancements in pre-existing detection methods for LVO. The results of this review highlight LVO detection techniques, such as stroke scales and biomarkers, with good sensitivity and specificity performance, whilst also showing advancements to support existing LVO confirmatory methods, such as neuroimaging.When treating patients with a disorder of consciousness (DOC), it is essential to obtain an accurate diagnosis as soon as possible to generate individualized treatment programs. However, accurately diagnosing patients with DOCs is challenging and prone to errors when differentiating patients in a Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) from those in a Minimally Conscious State (MCS). Upwards of ~40% of patients with a DOC can be misdiagnosed when specifically designed behavioral scales are not employed or improperly administered. To improve diagnostic accuracy for these patients, several important neuroimaging and electrophysiological technologies have been proposed. These include Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), and Transcranial Magnetic Stimulation (TMS). Here, we review the different ways in which these techniques can improve diagnostic differentiation between VS/UWS and MCS patients. We do so by referring to studies that were conducted within the last 10 years, which were extracted from the PubMed database. In total, 55 studies met our criteria (clinical diagnoses of VS/UWS from MCS as made by PET, fMRI, EEG and TMS- EEG tools) and were included in this review. By summarizing the promising results achieved in understanding and diagnosing these conditions, we aim to emphasize the need for more such tools to be incorporated in standard clinical practice, as well as the importance of data sharing to incentivize the community to meet these goals.Background Constipation is a significant symptom of Parkinson's disease (PD). Glial-derived neurotrophic factor (GDNF) is important for the morphogenesis of the enteric nervous system and plays a critical role in the preservation of mucosal integrity under enteric glia surveillance. The aim of this work was to evaluate the serum levels of GDNF in patients with PD with and without constipation. Methods This work included 128 patients with PD. The patients were classified into three groups those with PD but no constipation (nCons-PD) (n = 49), those with prodromal stage constipation (Cons-Pro-PD) (n = 48), and those with clinical stage constipation (Cons-Clinic-PD) (n = 31). The association between serum GDNF concentration and constipation was explored using logical regression. Results The nCons-PD group's mean GDNF levels were 528.44 pg/ml, which was higher than the Cons-Pro-PD group's 360.72 pg/ml and the Cons-Clinic-PD group's 331.36 pg/ml. The results of binary logistic regression indicated that GDNF was a protective factor in the prevention of constipation. Cons-Clinic-PD group had a higher score of MDS-UPDRS-II, MDS-UPDRS-III, MDS-UPDRS-IV, and a higher H-Y staging as compared with nCons-PD group. Relative to the nCons-PD group, Cons-Clinic-PD had higher NMSS scores, lower MoCA and PDSS scores, and were more likely to have RBD. Conclusions GDNF serum levels are lower in patients with PD who are constipated. A low GDNF level is a potential risk factor for constipation in patients with PD.Background Basilar artery fenestration has been proposed as a contributor to ischemic stroke, as unique flow patterns induced by fenestration may be related to thrombus formation or insufficiency. This study aimed to evaluate the hemodynamics of basilar artery fenestration (BAF) using computational fluid dynamics (CFD). Methods Patients with BAF and normal vertebrobasilar system were recruited and separately evaluated using CFD. Specific geometric vascular models were reconstructed based on 3D-rotational angiography (3D-RA). Patients were divided into the BAF group and control group (i.e., patients with the normal vertebrobasilar system). Hemodynamic and geometric variables were calculated and compared between groups using Student's t-test or Wilcoxon rank-sum test. Results Overall, 24 patients were included, with 12 patients each in the BAF group and the control group. The BAF group had a significantly smaller basilar artery diameter than the control group (3.1 ± 0.51 vs. selleck inhibitor 3.76 ± 0.4, p = 0.002). Compared to the control group, the BAF group had higher values of maxOSI (median, 0.3 vs. 0.09, p = 0.028), TAWSSG (median, 983.42 vs. 565.39, p = 0.038) in the flow confluence, higher SAR-TAWSSG in bifurcation (median, 70.22 vs. 27.65, p = 0.002) and higher SAR-TAWSSG in basilar artery (median, 48.75 vs. 16.17, p less then 0.001) of the vertebrobasilar artery. Conclusions This pilot study suggested that hemodynamic differences between BAF and normal vertebrobasilar artery across multiple shear flow parameters. The disturbed flow in the BAF may increase the risk of thrombus formation, plaque instability, and subsequent ischemic cerebrovascular events. These should be confirmed by future studies.Background Theta burst stimulation (TBS), a type of patterned repetitive transcranial magnetic stimulation (rTMS), has several advantages, such as short time of single treatment and low stimulation intensity compared with traditional rTMS. Since the efficacy of TBS on the symptoms of Parkinson's disease (PD) was inconsistent among different studies, we systematically searched these studies and quantitatively analyzed the therapeutic effect of TBS for patients with PD. Methods We followed the recommended PRISMA guidelines for systematic reviews. Studies from PubMed, EMBASE, CENTRAL, and ClinicalTrials.gov from January 1, 2005 of each database to September 30, 2021 were analyzed. We also manually retrieved studies of reference. Results Eight eligible studies with 189 participants (received real TBS and/or sham TBS) were included. This metaanalysis found that TBS did not significantly improve Unified Parkinson's Disease Rating Scale part III (UPDRS-III) score in the "on" medicine state (SMD = -0.06; 95% CI, -0.3ad a short-term (within 2 weeks) therapeutic effect on PD depression (MD = -2.93; 95% CI, -5.52 to -0.33; p = 0.03). Conclusion Our study demonstrated that cTBS over the SMA could significantly improve the UPDRS-III score for PD patients in the "off," not in the "on," medicine state. TBS could not bring significant improvement of upper limb movement dysfunction. ITBS over the M1+DLPFC could significantly improve the slowing of gait in the "off" medicine status. Additionally, iTBS over the M1+DLPFC has a short-term (within 2 weeks) therapeutic effect on PD depression. Further RCTs of a large sample, and excellent design are needed to confirm our conclusions.Accurate mapping of the seizure onset zone (SOZ) is critical to the success of epilepsy surgery outcomes. Epileptogenicity index (EI) is a statistical method that delineates hyperexcitable brain regions involved in the generation and early propagation of seizures. However, EI can overestimate the SOZ for particular electrographic seizure onset patterns. Therefore, using direct cortical stimulation (DCS) as a probing tool to identify seizure generators, we systematically evaluated the causality of the high EI nodes (>0.3) in replicating the patient's habitual seizures. Specifically, we assessed the diagnostic yield of high EI nodes, i.e., the proportion of high EI nodes that evoked habitual seizures. A retrospective single-center study that included post-stereo encephalography (SEEG) confirmed TLE patients (n = 37) that had all high EI nodes stimulated, intending to induce a seizure. We evaluated the nodal responses (true and false responder rate) to stimulation and correlated with electrographic seizure onset patterns (hypersynchronous-HYP and low amplitude fast activity patterns-LAFA) and clinically defined SOZ. The ictogenicity (i.e., the propensity to induce the patient's habitual seizure) of a high EI node was only 44.5%. The LAFA onset pattern had a significantly higher response rate to DCS (i.e., higher evoked seizures). The concordance of an evoked habitual seizure with a clinically defined SOZ with good outcomes was over 50% (p = 0.0025). These results support targeted mapping of SOZ in LAFA onset patterns by performing DCS in high EI nodes to distinguish seizure generators (true responders) from hyperexcitable nodes that may be involved in early propagation.Background Acute ischemic stroke (AIS) caused by tandem intracranial and extracranial occlusions is not rare. However, optimal strategy between antegrade (extracranial first) or retrograde (intracranial first) approaches still remains elusive. This systematic review and meta-analysis aim to compare the two approaches to provide updated clinical evidence of strategy selection. Methods PubMed, Ovid, Web of Science, and the Cochrane Library were searched for literature comparing antegrade and retrograde approaches for patients with AIS with concomitant tandem occlusions. Outcomes including successful reperfusion [Throbolysis in Cerebral Infarction (TICI) 2b-3] and 90-day favorable outcome [modified Rankin Scale (mRS) 0-2], any intracerebral hemorrhage, symptomatic intracerebral hemorrhage, procedural complications, and mortality were evaluated. The risk of bias was assessed using the Newcastle-Ottawa Scale and illustrated in the Funnel plot. Heterogeneity was assessed by I 2 statistic. Subgroup and sensitivity a design and a higher level of evidence are needed to confirm these results. Systematic Review Registration "PROSPERO" database (CRD 42020199093), https//www.crd.york.ac.uk/PROSPERO/.

Neuroimaging elucidations have shown structural and functional brain alterations in HIV-infected (HIV+) individuals when compared to HIV-negative (HIV-) controls. However, HIV- groups used in previous studies were not specifically considered for sexual orientation, which also affects the brain structures and functions. The current study aimed to characterize the brain alterations associated with HIV infection while controlling for sexual orientation.

Forty-three HIV+ and 40 HIV- homosexual men (HoM) were recruited and underwent resting-state MRI scanning. Group differences in gray matter volume (GMV) were assessed using a voxel-based morphometry analysis. Brain regions with the altered GMV in the HIV+ HoM group were then taken as regions of interest in a seed-based analysis to identify altered functional connectivity. Furthermore, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity values were compared between the two groups to evaluate the HIV-associated functional abnormalities in local brain regions.

Autoři článku: Kjeldsenhvidberg8505 (Maxwell Kaspersen)