Kinneymorse6389
In TNBC cells and non-cancerous mammary epithelial cells from high-risk women, hypomethylation of the KCNK9 DMR predicts for increased TASK3 expression and mitochondrial membrane potential (p less then 0.001). This is the first identification of the KCNK9 DMR in mammary epithelial cells and demonstration that its hypomethylation in breast cancer is associated with increases in both mitochondrial membrane potential and apoptosis resistance. The high frequency of hypomethylation of the KCNK9 DMR in TNBC and non-cancerous breast tissue from high-risk women provides evidence that hypomethylation of the KNCK9 DMR/TASK3 overexpression may serve as a marker of risk and a target for prevention of TNBC, particularly in African American women.Papillary thyroid micro-carcinomas are considered relatively indolent carcinomas, often occult and incidental, with good prognosis and favorable outcomes. Despite these findings, central lymph node metastases are common, and are related to a poor prognosis for the patient. We performed a retrospective analysis on patients treated with surgery for stage pT1a papillary thyroid micro-carcinomas. One hundred ninety-five patients were included in the analyses. The presence of central lymph node metastases was identified and studied. A multivariate analysis employing binary logistic regression was used to calculate adjusted odds ratios with 95% confidence intervals of possible central lymph node metastases risk factors. In the performed multivariate analysis, male gender, younger age, and histopathological characteristics, such as a tumor sub-capsular localization, were significantly associated with central lymph node metastases in pT1a patients. Central compartment lymph node metastases are present in a non-negligible number of cases in patients with papillary thyroid micro-carcinoma undergoing surgical resection. Studying these factors could be an effective tool for predicting patients' central lymph node metastases in papillary thyroid micro-carcinomas, defining a tailored surgical treatment in the future.Aneuploidy, an imbalance number of chromosomes, is frequently observed in lung cancer and inversely correlates with patient survival. Paradoxically, an aneuploid karyotype has detrimental consequences on cellular fitness, and it has been proposed that aneuploid cells, at least in vitro, generate signals for their own elimination by NK cells. However, how aneuploidy affects tumor progression as well as the interplay between aneuploid tumor cells and the tumor microenvironment is still unclear. We generated a new mouse model in which overexpression of Mad2 was almost entirely restricted to normal epithelial cells of the lung, and combined it with an oncogenic Eml4-Alk chromosome inversion. This combination resulted in a higher tumor burden and an increased number of tumor nodules compared to control Eml4-Alk mice alone. The FISH analysis detected significant differences in the aneuploidy levels in the non-tumor regions of Eml4-Alk+Mad2 compared to Eml4-Alk alone, although both tumor groups presented similar levels of aneuploidy. We further show that aneuploid cells in the non-tumor areas adjacent to lung tumors recruit immune cells, such as tumor-associated macrophages. In fact, these areas presented an increase in alveolar macrophages, neutrophils, decreased cytotoxic CD8+ T cells, and IFN-γ, suggesting that aneuploid cells in the surrounding tumor areas create an immunosuppressive signature that might contribute to lung tumor initiation and progression.Control of ionic gradients is critical to maintain cellular homeostasis in both physiological and pathological conditions, but the role of ion channels in cancer cells has not been studied thoroughly. In this work we demonstrated that activity of the Kv11.1 potassium channel plays a vital role in controlling the migration of colon cancer cells by reversing the epithelial-to-mesenchymal transition (EMT) into the mesenchymal-to-epithelial transition (MET). We discovered that pharmacological stimulation of the Kv11.1 channel with the activator molecule NS1643 produces a strong inhibition of colon cancer cell motility. In agreement with the reversal of EMT, NS1643 treatment leads to a depletion of mesenchymal markers such as SNAIL1, SLUG, TWIST, ZEB, N-cadherin, and c-Myc, while the epithelial marker E-cadherin was strongly upregulated. Investigating the mechanism linking Kv11.1 activity to reversal of EMT into MET revealed that stimulation of Kv11.1 produced a strong and fast inhibition of the TGFβ signaling. Application of NS1643 resulted in de-phosphorylation of the TGFβ downstream effectors R-SMADs by activation of the serine/threonine phosphatase PP2B (calcineurin). Consistent with the role of TGFβ in controlling cancer stemness, NS1643 also produced a strong inhibition of NANOG, SOX2, and OCT4 while arresting the cell cycle in G0/G1. Our data demonstrate that activation of the Kv11.1 channel reprograms EMT into MET by inhibiting TGFβ signaling, which results in inhibition of motility in colon cancer cells.We performed a systematic review of the literature to provide an overview of the application of PET radiomics for the prediction of the initial staging of prostate cancer (PCa), and to discuss the additional value of radiomic features over clinical data. The most relevant databases and web sources were interrogated by using the query "prostate AND radiomic* AND PET". English-language original articles published before July 2021 were considered. A total of 28 studies were screened for eligibility and 6 of them met the inclusion criteria and were, therefore, included for further analysis. All studies were based on human patients. The average number of patients included in the studies was 72 (range 52-101), and the average number of high-order features calculated per study was 167 (range 50-480). The radiotracers used were [68Ga]Ga-PSMA-11 (in four out of six studies), [18F]DCFPyL (one out of six studies), and [11C]Choline (one out of six studies). Considering the imaging modality, three out of six studies used ernal datasets, and unavailability of univocal cut-off values for the selected radiomic features.Fibrosis is a major cause of mortality. Key profibrotic mechanisms are common pathways involved in tumorigenesis. Characterizing the profibrotic phenotype will help reveal the underlying mechanisms of early development and progression of a variety of human diseases, such as fibrosis and cancer. Fibroblasts have been center stage in response to various stimuli, such as viral infections. However, a comprehensive catalog of cell types involved in this process is currently lacking. Here, we deployed single-cell transcriptomic data across multi-organ systems (i.e., heart, kidney, liver, and lung) to identify novel profibrotic cell populations based on ECM pathway activity at single-cell resolution. In addition to fibroblasts, we also reported that epithelial, endothelial, myeloid, natural killer T, and secretory cells, as well as proximal convoluted tubule cells of the nephron, were significantly actively involved. Cell-type-specific gene signatures were enriched in viral infection pathways, enhanced glycolysis, and carcinogenesis, among others; they were validated using independent datasets in this study. By projecting the signatures into bulk TCGA tumor samples, we could predict prognosis in the patients using profibrotic scores. Our profibrotic cellular phenotype is useful for identifying new mechanisms and potential drug targets at the cell-type level for a wide range of diseases involved in ECM pathway activation.High expression of the receptor tyrosine kinase TrkA/NTRK1 is associated with a favorable outcome in several solid tumors of childhood including neuroblastoma. During development, TrkA/NTRK1 governs migration and differentiation of neuronal precursor cells, while it is associated with mitotic dysfunction and altered DNA damage response, among others, in neuroblastoma. Here, we used human neuroblastoma cell lines with inducible TrkA/NTRK1 expression to mechanistically explore the role of TrkA/NTRK1 signaling in checkpoint activation after DNA damage induced by ionizing radiation (IR). TrkA/NTRK1 activated cells showed increased short-term cell viability upon IR compared to vector control cells. selleck chemicals This was accompanied by a deficient G2/M-checkpoint at both low (1 Gy) and high doses (4 Gy) of IR. In a tightly controlled setting, we confirmed that this effect was strictly dependent on activation of TrkA/NTRK1 by its ligand, nerve growth factor (NGF). TrkA/NTRK1-expressing cells displayed impaired ATM and CHK1 phosphorylation, resulting in stabilization of CDC25B. In line with these findings, ATM or ATR inhibition recapitulated the effects of TrkA/NTRK1 activation on the IR-induced G2/M-checkpoint. In conclusion, we here provide first evidence for a previously unrecognized function of NTRK signaling in checkpoint regulation and the response to IR.Renal medullary carcinoma (RMC) is a lethal malignancy affecting individuals with sickle hemoglobinopathies. Currently, no modifiable risk factors are known. We aimed to determine whether high-intensity exercise is a risk factor for RMC in individuals with sickle cell trait (SCT). We used multiple approaches to triangulate our conclusion. First, a case-control study was conducted at a single tertiary-care facility. Consecutive patients with RMC were compared to matched controls with similarly advanced genitourinary malignancies in a 12 ratio and compared on rates of physical activity and anthropometric measures, including skeletal muscle surface area. Next, we compared the rate of military service among our RMC patients to a similarly aged population of black individuals with SCT in the U.S. Further, we used genetically engineered mouse models of SCT to study the impact of exercise on renal medullary hypoxia. Compared with matched controls, patients with RMC reported higher physical activity and had higher skeletal muscle surface area. A higher proportion of patients with RMC reported military service than expected compared to the similarly-aged population of black individuals with SCT. link2 When exposed to high-intensity exercise, mice with SCT demonstrated significantly higher renal medulla hypoxia compared to wild-type controls. These data suggest high-intensity exercise is the first modifiable risk factor for RMC in individuals with SCT.EBV is the first known oncogenic virus involved in the development of several tumors. link3 The majority of the global population are infected with the virus early in life and the virus persists throughout life, in a latent stage, and usually within B lymphocytes. Despite the worldwide diffusion of EBV infection, EBV-associated diseases develop in only in a small subset of individuals often when conditions of immunosuppression disrupt the balance between the infection and host immune system. EBV-driven lymphoid proliferations are either of B-cell or T/NK-cell origin, and range from disorders with an indolent behavior to aggressive lymphomas. In this review, which is divided in three parts, we provide an update of EBV-associated lymphoid disorders developing in the gastrointestinal tract, often representing a challenging diagnostic and therapeutic issue. Our aim is to provide a practical diagnostic approach to clinicians and pathologists who face this complex spectrum of disorders in their daily practice. In this part of the review, the chronic active EBV infection of T-cell and NK-cell type, its systemic form; extranodal NK/T-cell lymphoma, nasal type and post-transplant lymphoproliferative disorders are discussed.