Khantimm3236
In this work, Hcy-OB, a novel hemicyanine-based biocompatible dual-function fluorescence probe for bisulfite and H2O2 detection is designed and synthesized. Based on a 1,4-addition reaction, Hcy-OB can be used for bisulfite detection with fast response, high sensitivity and low detection limit (120 nM). In addition, the probe is successfully applied to the detection of bisulfite in aqueous solution. Furthermore, Hcy-OB shows excellent performance for hydrogen peroxide detection with the oxidation of phenylboronic acid. Hcy-OB shows excellent selectivity to H2O2 over other interfering substances with detection limit of H2O2 is calculated to be 70 nM. Most importantly, due to its good cell membrane permeability and low cytotoxicity, Hcy-OB has been applied to monitor and image H2O2 in living cells and mice.In recent years, Raman spectroscopy has become an established method to study medical, biological or environmental samples. Since Raman spectroscopy is a phenotypic method, many parameters can influence the spectra. One of these parameters is the concentration of CO2, as this never remains stable in nature, but always adjusts itself in a dynamic equilibrium. So, it is obvious that the concentration of CO2 cannot be controlled but it might have a big impact on the bacteria and bacterial composition in medical samples. When using a phenotypic method like Raman spectroscopy it is also important to know the influence of CO2 to the dataset. To investigate the influence of CO2 towards Raman spectra we cultivated E. coli at different concentration of CO2 since this bacterium is able to switch metabolism from aerobic to microaerophilic conditions. After applying statistic methods small changes in the spectra became visible and it was even possible to observe the change of metabolism in this species according to the concentration of CO2.Stolons and rhizomes are modified stems for vegetative reproduction. While stolons grow above the ground, rhizomes grow beneath the ground. Stolons and rhizomes maintain the genotypes of hybrids and hence are invaluable for agricultural propagation. Diploid strawberry is a model for studying stolon development. At the axillary meristems, gibberellins and MADS box gene SOC1 promote stolon formation, while the DELLA repressor inhibits stolon development. Photoperiod regulates stolon formation through regulating GA biosynthesis or balancing asexual with sexual mode of reproduction in the axillary meristems. In rhizomatous wild rice, the BLADE-ON-PETIOLE gene promotes sheath-to-blade ratio to confer rhizome tip stiffness and support underground growth. Together, this review aims to encourage further investigations into stolon and rhizome to benefit agriculture and environment.Cotton is the largest source of natural fiber for textile industry in the world. Cotton fibers are seed trichomes that make cotton unique among plants. Cotton fibers originate from ovule epidermal cells and serve as an excellent model to study the process of cell differentiation in plants. Characterization of factors contributing to fiber development will help to reveal general mechanisms of cell differentiation in plants. Transcription factors (TFs), especially MYB-MIXTA-like (MML) factors, appear to have evolved unique roles in fiber development. In addition, phytohormones including brassinosteroids, jasmonic acid, GA and auxin also play an important role in regulating fiber development. Here, we summarize the mechanisms of MIXTAs and phytohormones orchestrating cotton fiber development. The progress in understanding molecular basis of fiber development will facilitate future genetic engineering and breeding to improve cotton fiber quality and yield.This study aims to investigate the expression and function of absent, small, or homeotic 1-like (ASH1L) methyltransferase in bovine cumulus cells in order to reveal by which mechanisms ASH1L regulates epigenetic modification and apoptosis in cumulus cells. The location of ASH1L and the methylation pattern of H3K36 were detected using immunofluorescence staining in cumulus cells. Quantitative PCR (qPCR) and western blotting were used to screen for effective siRNA targeting the ASH1L gene. Also, the mRNA expression levels of apoptosis-related genes and polycomb inhibitory complex genes were estimated by qPCR after knocking down the ASH1L gene in bovine cumulus cells. Cell proliferation and apoptosis were measured with the CCK-8 method and Annexin V-FITC by flow cytometry, respectively. The results of immunofluorescence analysis showed that ASH1L is located in the nucleus of bovine cumulus cells and is distributed in a dotted pattern. ASH1L knockdown in cumulus cells induced a decrease in the levels of H3K36me1/2/3 methylation (P less then 0.05). Additionally, ASH1L knockdown inhibited cell proliferation, increased the apoptosis rate, and upregulated the expression of apoptosis genes CASPASE-3, BAX and BAX/BCL-2 ratio (P less then 0.05). Meanwhile, the mRNA expression levels of EZH2 and SUZ12, two subunits of PRC2 protein, were increased in cells with ASH1L knockdown (P less then 0.05). Therefore, the expression of ASH1L methyltransferase and its function in on the apoptosis of bovine cumulus cells were first studied. The mechanism by which ASH1L regulates the histone methylation and apoptosis in cumulus cells was also revealed.Lipopolysaccharide (LPS) significantly reduces pre- and post-implantation developmental competence of embryos. One of the reason of this effect could be a consequence of TLR4-mediated inflammation. In this study, we assessed the anti-inflammatory effect of peroxisome proliferator activated receptor γ (PPAR γ) agonist, rosiglitazone (RGZ), in LPS-treated mouse embryos. Initially, the optimal doses of LPS, RGZ and GW9662 (a potent and selective PPARγ antagonist) were determined by treating the mouse zygotes up to blastocyst stage and assessment of compaction and blastocyst rates. Sepantronium Quantitative PCR was used to assess the mRNA expression of inflammatory cytokines. Immunostaining was used to study the translocation of PPARγ in blastocysts. Finally, the blastocysts were transferred to surrogate mouse to determine the post-implantation developmental competence. 0.0625 mg/mL of LPS significantly reduced the developmental competency by around 50% compared to control group. 10 μM of RGZ significantly ameliorated the toxic effect of LPS, which was also significantly reversed by 1.