Khanhodge2926
To assess the effects of the initial stepping limb on posterior fall recovery in individuals with chronic stroke, as well as to determine the benefits of fall-recovery training on these outcomes.
This was a single-group intervention study of 13 individuals with chronic stroke. Participants performed up to six training sessions, each including progressively challenging, treadmill-induced perturbations from a standing position. Progressions focused on initial steps with the paretic or non-paretic limb. The highest perturbation level achieved, the proportion of successful recoveries, step and trunk kinematics, as well as stance-limb muscle activation about the ankle were compared between the initial stepping limbs in the first session. Limb-specific outcomes were also compared between the first and last training sessions.
In the first session, initial steps with the non-paretic limb were associated with a higher proportion of success and larger perturbations than steps with the paretic limb (p=0.02, Cohen's d=0.8). Paretic-limb steps were wider relative to the center of mass (CoM; p=0.01, d=1.3), likely due to an initial standing position with the CoM closer to the non-paretic limb (p=0.01, d=1.4). In the last training session, participants recovered from a higher proportion of perturbations and advanced to larger perturbations (p<0.05, d>0.6). There were no notable changes in kinematic or electromyography variables with training (p>0.07, d<0.5).
The skill of posterior stepping in response to a perturbation can be improved with practice in those with chronic stroke, we were not able to identify consistent underlying kinematic mechanisms behind this adaptation.
The skill of posterior stepping in response to a perturbation can be improved with practice in those with chronic stroke, we were not able to identify consistent underlying kinematic mechanisms behind this adaptation.The defining feature of the eukaryotic cell, the nucleus, is bounded by a double envelope. This envelope and the nuclear pores within it play a critical role in separating the genome from the cytoplasm. It also presents cells with a challenge. How are cells to remodel the nuclear compartment boundary during mitosis without compromising nuclear function? In the two billion years since the emergence of the first cells with a nucleus, eukaryotes have evolved a range of strategies to do this. At one extreme, the nucleus is disassembled upon entry into mitosis and then reassembled anew in the two daughter cells. At the other, cells maintain an intact nuclear compartment boundary throughout the division process. In this review, we discuss common features of the division process that underpin remodelling mechanisms, the topological challenges involved and speculate on the selective pressures that may drive the evolution of distinct modes of division.Glucagon-like peptide-1 receptor (GLP1R) is a seven-transmembrane-spanning helices membrane protein expressed in multiple human tissues including pancreatic islets, lung, brain, heart and central nervous system (CNS). GLP1R agonists are commonly used as antidiabetic drugs, but a neuroprotective function in neurodegenerative disorders is emerging. Here, we established two iPSC lines from a patient harboring a rare homozygous splice site variant in GLP1R (NM_002062.3; c.402 + 3delG). This patient displays severe developmental delay and epileptic encephalopathy. Therefore, the derivation of these iPSC lines constitutes a primary model to study the molecular pathology of GLP1R dysfunction and develop novel therapeutic targets.In order to increase the knowledge about pesticides considering the soil-water interaction, ecosystem models (mesoscosms) were used to analyze the of leachate on the immobility and feeding rate of the cladocerans, Ceriodaphnia silvestrii and D. similis and algae Raphidocelis subcapitata, at two different temperatures. Mesocosm were filled with natural soil (latosolo) that were contaminated with insecticide/acaricide Kraft 36 EC® and fungicide Score 250 EC®, using the recommended concentration for strawberry crops (10.8 g abamectin/ha and 20 g difenoconazole/ha). Pesticides were applied once (hand sprayers) and the precipitation was simulated twice a week (Days 1, 4, 8, 11, 15 and 18). The mesocosm were kept in a room with a controlled temperature (23 and 33 °C) and photoperiod (12h light/12h dark). The Kraft 36 EC® insecticide showed toxicity for both species of cladocerans tested, with effects on immobility and feeding rate, both at 23 and 33 °C. selleck kinase inhibitor Score 250 EC® showed to be toxic only for the experiments that analyzed the immobility of C. silvestrii at 23 °C and the feeding of D. smilis at 33 °C, demonstrating that the effects are species-specific and related to the temperature at which they are tested. While for species R. subcapitata there was an effect only for mixture treatments of the pesticides analyzed at both temperatures. Thereby, zooplanktonic organisms may be at risk when exposed to this compound even after percolating in a soil column, which could lead to effects on the entire aquatic trophic chain and that temperature can influence the organism response to the contaminant.Humans are exposed to a multitude of endocrine disruptor chemicals (EDCs) that can interfere with the action of endogenous hormones and the normal development of reproductive organs. Bisphenol A (BPA) is one of the most common EDCs found in the environment. Here, we evaluated BPA toxicity on fetal testes using an in vitro organ culture system. Mouse fetal testes sampled at 15.5 days post coitus were cultured in a medium containing BPA for 5 days. The number of germ cells was reduced by BPA treatment, whereas the number of Sertoli cells was slightly increased by BPA at the highest dose (100 μM). Consistently, BPA treatment reduced the protein and gene expression levels of germ cell markers, but it increased the expression levels of Sertoli cell markers. The expression levels of fetal Leydig cell markers such as Cyp11a1, Thbs2, Cyp17a1, and Pdgf-α were significantly increased, whereas those of adult Leydig cell markers such as Hsd17b3, Ptgds, Sult1e1, Vcam1, and Hsd11b1 were decreased in the testes exposed to BPA.