Keycampos9090
Overall, this study provides foundations for the fabrication of stable, yet fully resorbable, Mg-based bone implants that could reduce implant-associated infections.Poly(lactic-co-glycolic acid) (PLGA) is the most prevalent polymer drug delivery vehicle in use today. There are about 20 commercialized drug products in which PLGA is used as an excipient. In more than half of these formulations, PLGA is used in the form of microparticles (with sizes in the range between 60 nm and 100 μm). The primary role of PLGA is to control the kinetics of drug release toward achieving sustained release of the drug. Unfortunately, most drug-loaded PLGA microparticles exhibit a common drawback an initial uncontrolled burst of the drug. After 30 years of utilization of PLGA in controlled drug delivery systems, this initial burst drug release still remains an unresolved challenge. In this Review, we present a summary of the proposed mechanisms responsible for this phenomenon and the known factors affecting the burst release process. Also, we discuss examples of recent efforts made to reduce the initial burst release of the drug from PLGA particles.Breast cancer (BC) is increasing as a significant cause of mortality among women. In this context, early diagnosis and treatment strategies for BC are being developed by researchers at the cellular level using advanced nanomaterials. However, immaculate etiquette is the prerequisite for their implementation in clinical practice. Considering the stolid nature of cancer, combining diagnosis and therapy (theranostics) using graphene quantum dots (GQDs) is a prime focus and challenge for researchers. In a nutshell, GQDs is a new shining star among various fluorescent materials, which has acclaimed fame in a short duration in materials science and the biomedical field as well. click here From this perspective, we review various strategies in BC treatment using GQDs alone or in combination. In addition, the photophysical properties of GQDs explored in photothermal therapy, hyperthermia therapy, and photodynamic therapy are also discussed. Moreover, we also focus on the strategic use of GQDs both as drug carriers and as combinatorial-guided drug delivery motifs. This Review provides an update for the scientific community to plan and expand advanced theranostic horizons in BC using GQDs.Stimuli-responsive biomaterials have attracted significant attention for the construction of on-demand drug release systems. The possibility of using external stimulation to trigger drug release is particularly enticing for hydrophobic compounds, which are not easily released by simple diffusion. In this work, an electrochemically active hydrogel, which has been prepared by gelling a mixture of poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOTPSS) and alginate (Alg), has been loaded with curcumin (CUR), a hydrophobic drug with a wide spectrum of clinical applications. The PEDOT/Alg hydrogel is electrochemically active and organizes as segregated PEDOT- and Alg-rich domains, explaining its behavior as an electroresponsive drug delivery system. When loaded with CUR, the hydrogel demonstrates a controlled drug release upon application of a negative electrical voltage. Comparison with the release profiles obtained applying a positive voltage and in the absence of electrical stimuli indicates that the release mechanism dominating this system is complex because of not only the intermolecular interactions between the drug and the polymeric network but also the loading of a hydrophobic drug in a water-containing delivery system.Recognition of folate and biotin surface receptors by dual-functionalized nanoparticles (NPs) is key for site-selective receptor-mediated transport of anticancer drugs to cancer cells. We present here dopamine-capped iron oxide nanoprobes (Fe3O4, 10 ± 2 nm) containing two surface-grafted biologically relevant ligands, namely, folic acid (FA) and biotin (BT). The covalent attachment of both FA and BT on Fe3O4 nanoparticles was achieved by following carbodiimide coupling and click-chemistry protocols. The dual-function Fe3O4 probes were delivered into E-G7 and human HeLa cancer cell lines and tested toward their cellular uptake by immunofluorescence and flow cytometry analysis. Owing to receptor-mediated endocytosis, enhanced accumulation of nanoprobes in cancer cells was successfully monitored by confocal laser microscopy. When compared to dual-function probes, single-functionalized nanoparticles possessing either FA or BT ligands showed significantly reduced uptake in the tested cell lines, underlining the superior interaction potential of dual-purpose probes. A time-dependent receptor-mediated endocytosis of FA-Fe3O4-BT nanovectors was demonstrated by flow cytometry analysis, whereas the unfunctionalized NPs did not show any specificity in terms of uptake. Besides their specific uptake, the surface-functionalized nanoparticles exhibited promising cytotoxicity profiles by demonstrating good viability of more than 95% with analogous cancer cell lines. Our results demonstrate that dual and/or multivariate conjugation of receptor-specific ligands on NPs is highly effective in molecular recognition of surface biomarkers that enhances their potential in anticancer treatment for pretargeting-radio strategies based on biotin/avidin interactions.Proteins with different micropatterns have various applications in biosensing, structural analysis, and other biomedical fields. However, processing of micropatterns on single protein crystals remains a challenge due to the fragility of protein molecules. In this work, we studied femtosecond laser processing on single hen egg white lysozyme protein crystals. Optimized laser parameters were found to achieve micropatterning without cracking of protein crystals. The ablation morphology dependence on the laser fluence and the pulse number was discussed to control the processing results. Under a laser fluence higher than 1 J/cm2, the ablation hole was formed. While multipulses with fluence lower than the ablation threshold were applied, the foaming area was observed due to the denaturation of protein. The numerical simulation shows that the ablation results were influenced by the ionization and energy deposition process. Micropatterns including lines, areas, and microarrays can be processed with a minimum size of 2 μm.