Kerralbrechtsen7292

Z Iurium Wiki

This study aims to improve the operational safety of reinforced concrete-ribbed beam bridge decks and prolong their service life by performing fatigue analysis of deck slabs reinforced with carbon-fiber-reinforced polymers (CFRP) and other materials. Based on a 16-m-span ribbed girder bridge, five test beams were designed three reinforced (with CFRP cloth, CFRP mesh, and strip steel plates) and the remaining unreinforced. To simulate the real force of the bridge deck slabs, a PLS-500 electro-hydraulic servo dynamic and static test system was used and static load failure (monotonic graded loading) and fixed-point constant-amplitude fatigue loading tests (fatigue load of 0.515, loading frequency of 5 Hz) were performed. The main fatigue crack appeared when the number of load cycles exceeded 90% of the fatigue life. In the middle of fatigue, the reinforcement material can reduce the deterioration value of the bridge deck by approximately 50%. When it is reinforced at the cumulative damage degree of 0.4, its fatigue life extends by approximately 53.3-78.9%. The fatigue life of the bridge deck slabs reinforced with CFRP cloth or mesh was 22.1-25.6% more than that of those reinforced with strip steel plates. CFRP cloth is best suited for the reinforcement of bridge deck slabs.Polyurethane (PU) foams are versatile materials with a broad application range. Their performance is driven by the stoichiometry of polymerization reaction, which has been investigated in several works. However, the analysis was often limited only to selected properties and compared samples differing in apparent density, significantly influencing their performance. In the bigger picture, there is still a lack of comprehensive studies dealing with the stoichiometry impact on PU foams' performance. Herein, flexible PU foams with a similar apparent density but differing in the isocyanate index (IIso) (from 0.80 to 1.20) were prepared. The stoichiometry-structure-performance relationships were investigated considering cellular and chemical structure, as well as the static and dynamic mechanical properties, thermal stability, thermal insulation, and acoustic performance. For IIso of 1.00, the biggest cell diameters of 274 µm were noted, which was 21-25% higher compared to 0.80 and 1.20 values. Increasing IIso reduced open cell content from 83.1 to 22.4%, which, combined with stiffening of structure (rise of modulus from 63 to 2787 kPa) resulting from crosslinking, limited the sound suppression ability around five times. On the other hand, it significantly strengthened the material, increasing tensile and compressive strength 4 and 13 times, respectively. Changes in the foams' performance were also induced by the glass transition temperature shift from 6.1 to 31.7 °C, resulting from a greater extent of urethane groups' generation and additional isocyanate reactions. Generally, the presented work provides important insights into preparing flexible PU foams and could be very useful for the future development of these materials.Plastic parts used in automotive interior are difficult to coat, due to their low surface energies as well as their sensitivity to temperature and solvents, rendering the development of coating systems for such substrates challenging. Automotive customer requirements are explicit and clear, mainly focused on functional and surface defects. A new failure modes detection methodology of UV clear coated polymers for automotive interior, obtained by a multi-step manufacturing process, is proposed. The polymer complex parts analyzed in this paper are manufactured in various steps as follows two components plastic injection molding, primer coating, laser engraving, and UV-cured clear coating. The failure modes detection methodology of the parts within each process step is investigated using different tests and analyses as follows surface tension test, painting adhesion test, optical 3D measuring, energy dispersive X-ray analysis (EDX), and microscopy. A design of the experiments (DoE) based on the Taguchi technique with the aim to detect the influence of the main factors that lead to surface defects was performed. The proposed methodology is validated by a case study. The results showed that the mold temperature and the laser engraving current have a significant influence on the surface defect occurrence. Additionally, a possible contamination of the molding tool can generate the defects. A solution to reduce the occurrence of the failures was proposed, reducing the defect rate from 50% to 0.9%.In the context of lifetime extension of Nuclear Power Plants (NPPs), electric cable ageing has to be checked to evaluate their performance during normal operation. These electric cables are complex materials, with a conductor and insulating shield in the metal and insulating layer and sheath in the polymer; the most sensitive layer is commonly considered to be the insulating layer. The ageing mechanism upon irradiation under oxidative conditions has been evaluated using gas mass spectrometry and the first conclusions have been drawn. Nonetheless, the data obtained are very numerous and complex; thus, the objective of this new article regards these experimental results using mathematical tools. It allowed confirmation of all the results obtained on these materials, but using chemometrics, i.e., statistical/mathematical analyses, of the results. Using these powerful mathematical tools gives strength to the analyses realised and to the conclusions obtained.The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.Chitosan is a biopolymer that, due to its versatile bioactive properties, has applications in several areas, including food, medicine and pharmaceuticals. In the field of tissue engineering, chitosan can be used, for example, as a dressing to treat wounds or dermal damage, such as burns or abrasions. This work deals with the controlled release of tea tree oil from chitosan-based polymeric films and droplets containing gold nanoparticles (AuNP). AuNPs were successfully incorporated into the chitosan matrix using two different approaches. Both solutions were loaded with tea tree oil, and from these solutions, it was possible to obtain drop-cast films and droplets. The controlled release of oil in water was performed both in the films and in the droplets. The addition of AuNP in the controlled release system of melaleuca oil favored a release time of around 25 h. A series of experiments was carried out to investigate the effects of different reaction temperatures and acetic acid concentrations on the formation of AuNPs in the presence of chitosan. For this purpose, images of the AuNP films and droplets were obtained using transmission electron microscopy. In addition, UV-vis spectra were recorded to investigate the release of tea tree oil from the different samples.The growing concern about the limitation of non-renewable resources has brought a focus on the development of environmentally sustainable and biodegradable composite materials. In this context, a trend in the development of natural fibers used as a reinforcement in composites is ever-increasing. In this work, for the first-time, fibers extracted from the seven-islands-sedge plant (Cyperus malaccensis) have been characterized by X-ray diffraction (XRD) to calculate the crystallinity index and the microfibrillar angle (MFA). Also, an evaluation of the ultimate tensile strength by diameter intervals has been investigated and statistically analyzed by both the Weibull method and the analysis of variance (ANOVA). Moreover, the maximum deformation and tensile modulus have been found from the data acquired. Pullout tests have been conducted to investigate the critical length and interfacial strength when sedge fibers, are incorporated into epoxy resin matrix. Microstructure analysis by scanning electron microscopy (SEM) was performed to observe the mechanism responsible for causing rupture of the fiber as well as the effective fiber interfacial adhesion to the epoxy matrix.Most commercialized wound dressings are polymer-based. Synthetic and natural polymers have been utilized widely for the development of wound dressings. However, the use of natural polymers is limited by their poor mechanical properties, resulting in their combination with synthetic polymers and other materials to enhance their mechanical properties. Natural polymers are mostly affordable, biocompatible, and biodegradable with promising antimicrobial activity. They have been further tailored into unique hybrid wound dressings when combined with synthetic polymers and selected biomaterials. Some important features required in an ideal wound dressing include the capability to prevent bacteria invasion, reduce odor, absorb exudates, be comfortable, facilitate easy application and removal as well as frequent changing, prevent further skin tear and irritation when applied or removed, and provide a moist environment and soothing effect, be permeable to gases, etc. The efficacy of polymers in the design of wound dressings cannot be overemphasized. This review article reports the efficacy of wound dressings prepared from a combination of synthetic and natural polymers.Whey proteins are mainly a group of small globular proteins. Their structures can be modified by physical, chemical, and other means to improve their functionality. The objectives of this study are to investigate the effect of radiation on protein-protein interaction, microstructure, and microbiological properties of whey protein-water solutions for a novel biomaterial tissue adhesive. Whey protein isolate solutions (10%, 27%, 30%, 33%, and 36% protein) were treated by different intensities (10-35 kGy) of gamma radiation. The protein solutions were analyzed for viscosity, turbidity, soluble nitrogen, total plate count, and yeast and mold counts. The interactions between whey proteins were also analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and scanning electron microscopy. The viscosity of protein solution (27%, w/w) was increased by the treatment of gamma radiation and by the storage at 23 °C. The 35 kGy intensity irradiated soluble nitrogen (10%, w/w) was reduced to about half of the sample treated by 0 kGy gamma radiation. CPI0610 The effects of gamma radiation and storage time can significantly increase the viscosity of whey protein solutions (p < 0.05). Radiation treatment had significant impact on soluble nitrogen of whey protein solutions (p < 0.05). SDS-PAGE results show that the extent of oligomerization of whey protein isolate solutions are increased by the enhancement in gamma radiation intensity. Photographs of SEM also indicate that protein-protein interactions are induced by gamma radiation in the model system. Consistent with above results, the bonding strength increases by the addition of extent of gamma radiation and the concentration of glutaraldehyde. Our results revealed that the combination of gamma-irradiated whey protein isolate solutions and glutaraldehyde can be used as a novel biomaterial tissue adhesive.

Autoři článku: Kerralbrechtsen7292 (Powell Winkel)