Kennynyborg1975
ive diseases.A drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability. Analysis of mRNA-LNP structures reveals that mRNA, the ionizable cationic lipid and water are present in the LNP core. The neutral helper lipids are mainly positioned in the outer, encapsulating, wall. mRNA hydrolysis is the determining factor for mRNA-LNP instability. It is currently unclear how water in the LNP core interacts with the mRNA and to what extent the degradation prone sites of mRNA are protected through a coat of ionizable cationic lipids. To improve the stability of mRNA-LNP vaccines, optimization of the mRNA nucleotide composition should be prioritized. Secondly, a better understanding of the milieu the mRNA is exposed to in the core of LNPs may help to rationalize adjustments to the LNP structure to preserve mRNA integrity. Moreover, drying techniques, such as lyophilization, are promising options still to be explored.Counterfeiting has never been more challenging than during the COVID-19 pandemic as counterfeit test kits and therapeutics have been discovered in the market. Current anti-counterfeiting labels have weaknesses they can either be duplicated easily, are expensive or ill-suited for the existing complex supply chains. While RFID tags provide for an excellent alternative to current anti-counterfeiting methods, they can prove to be expensive and other routes involving nanomaterials can be difficult to encrypt. A DNA based anticounterfeiting system has significant advantages such as relative ease of synthesis and vast data storage abilities, along with great potential in encryption. Although DNA is equipped with such beneficial properties, major challenges that limit its real-world anti-counterfeiting applications include protection in harsh environments, rapid inexpensive sequence determination, and its attachment to products. This review elaborates the current progress of DNA based anti-counterfeiting systems and identifies technological gaps that need to be filled for its practical application. Progress made on addressing the primary challenges associated with the use of DNA, and potential solutions are discussed.A Near Infrared (NIR) method was developed using a small benchtop feed frame system to quantify Saccharin potency in a powder blend during continuous manufacturing process. A 15-point Design of Experiments (DoE) was created based on the NIR spectral response and compositions of the formulation to develop a calibration set. The calibration set was designed to create compositional and raw material lots variation using minimum resources. The calibration experiments utilized around 0.5 kg Saccharin (Active Pharmaceutical Ingredient (API) surrogate) and 1.8 kg of excipients. Partial Least Square (PLS) modeling was used to develop a quantitative NIR method from the calibration data. The NIR method was implemented during 5 test batches in two different manufacturing sites across different potency levels at a continuous manufacturing platform for direction compression. Acceptable prediction performance was achieved from the NIR method at both sites. The NIR method was robust against changes in process scale and NIR instruments. The variance information built into the calibration set was found to be critical to successful model performance. click here This study shows a benchtop feed frame can be used for material sparing calibration method development without operating at a full-scale process line and applied across multiple sites, instruments at different potency levels.Resistance to platinum agents is a crucial challenge in the treatment of cancer using platinum drugs. To overcome the resistance of cells, the survivin protein is supposed to be decreased, since it has previously been found to be overexpressed in drug-resistant cancer cells in anti-apoptosis pathways, while the intracellular effective platinum accumulation should be increased. In the present work, a protamine/hyaluronic acid nanocarrier was used to load survivin siRNA with Pt(IV) loaded outside the coated polyglutamic acid (PGA) by chemical conjugation. The siRNA was released from the co-loaded nanoparticle prior to Pt(IV), in this way, the expression of survivin protein was effectively reduced, which, in turn, could avoid the anti-apoptosis of drug resistant cells. Here, Pt(IV) displayed a sustained release effect and gradually reduced to the toxic Pt(II) species, which reduced drug efflux and enhance apoptosis of the cancer cells. In vitro studies demonstrated that co-loaded nanoparticles resulted in similar cell killing performance in A549/DDP cells (cisplatin resistant) compared with non-siRNA loaded nanoparticles in A549 cells (cisplatin sensitive). NP-siRNA/Pt(IV) exhibited a greatly improved therapeutic effect (TIR, 82.46%) in a nude mice A549/DDP tumor model, with no serious adverse effects observed. Thus, co-loading of Pt(IV) and survivin siRNA nanoparticles could reverse cisplatin resistance and therefore has promising prospects for efficient cancer chemotherapy.The purpose of the study is to build a "virtual roller compactor" as a predictive tool to assess the roll force (RF)-maximum pressure (Pmax) and RF-ribbon density relationship for pharmaceutical roller compaction. We provided a theoretical basis to demonstrate that, there exists a critical nip angle for a pharmaceutical powder, beyond which the RF-Pmax relationship is insensitive to wall friction angle or effective angle of internal friction. We showed that for most pharmaceutical roller compaction, the critical nip angle is lower than 17 degree, and can be exceeded via wall friction elevation, using rolls with non-smooth surface. Under this condition, the original Johanson model can be substantially simplified to a single equation requiring only one material property (compressibility). By performing manufacturing-scale roller compaction using materials with diverse compressibility, we showed that the simplified, friction angle-free model performed similar to the original Johanson model. It can predict the RF-Pmax and RF-ribbon density relationship well after applying a correction factor.